938 resultados para mathematical concepts
Resumo:
The Pattern and Structure Mathematical Awareness Program(PASMAP) stems from a 2-year longitudinal study on students’ early mathematical development. The paper outlines the interview assessment the Pattern and Structure Assessment(PASA) designed to describe students’ awareness of mathematical pattern and structure across a range of concepts. An overview of students’ performance across items and descriptions of their structural development are described.
Resumo:
Hypertrophic scars arise when there is an overproduction of collagen during wound healing. These are often associated with poor regulation of the rate of programmed cell death(apoptosis) of the cells synthesizing the collagen or by an exuberant inflammatory response that prolongs collagen production and increases wound contraction. Severe contractures that occur, for example, after a deep burn can cause loss of function especially if the wound is over a joint such as the elbow or knee. Recently, we have developed a morphoelastic mathematical model for dermal repair that incorporates the chemical, cellular and mechanical aspects of dermal wound healing. Using this model, we examine pathological scarring in dermal repair by first assuming a smaller than usual apoptotic rate for myofibroblasts, and then considering a prolonged inflammatory response, in an attempt to determine a possible optimal intervention strategy to promote normal repair, or terminate the fibrotic scarring response. Our model predicts that in both cases it is best to apply the intervention strategy early in the wound healing response. Further, the earlier an intervention is made, the less aggressive the intervention required. Finally, if intervention is conducted at a late time during healing, a significant intervention is required; however, there is a threshold concentration of the drug or therapy applied, above which minimal further improvement to wound repair is obtained.
Resumo:
Nonhealing wounds are a major burden for health care systems worldwide. In addition, a patient who suffers from this type of wound usually has a reduced quality of life. While the wound healing process is undoubtedly complex, in this paper we develop a deterministic mathematical model, formulated as a system of partial differential equations, that focusses on an important aspect of successful healing: oxygen supply to the wound bed by a combination of diffusion from the surrounding unwounded tissue and delivery from newly formed blood vessels. While the model equations can be solved numerically, the emphasis here is on the use of asymptotic methods to establish conditions under which new blood vessel growth can be initiated and wound-bed angiogenesis can progress. These conditions are given in terms of key model parameters including the rate of oxygen supply and its rate of consumption in the wound. We use our model to discuss the clinical use of treatments such as hyperbaric oxygen therapy, wound bed debridement, and revascularisation therapy that have the potential to initiate healing in chronic, stalled wounds.
Resumo:
The growth of solid tumours beyond a critical size is dependent upon angiogenesis, the formation of new blood vessels from an existing vasculature. Tumours may remain dormant at microscopic sizes for some years before switching to a mode in which growth of a supportive vasculature is initiated. The new blood vessels supply nutrients, oxygen, and access to routes by which tumour cells may travel to other sites within the host (metastasize). In recent decades an abundance of biological research has focused on tumour-induced angiogenesis in the hope that treatments targeted at the vasculature may result in a stabilisation or regression of the disease: a tantalizing prospect. The complex and fascinating process of angiogenesis has also attracted the interest of researchers in the field of mathematical biology, a discipline that is, for mathematics, relatively new. The challenge in mathematical biology is to produce a model that captures the essential elements and critical dependencies of a biological system. Such a model may ultimately be used as a predictive tool. In this thesis we examine a number of aspects of tumour-induced angiogenesis, focusing on growth of the neovasculature external to the tumour. Firstly we present a one-dimensional continuum model of tumour-induced angiogenesis in which elements of the immune system or other tumour-cytotoxins are delivered via the newly formed vessels. This model, based on observations from experiments by Judah Folkman et al., is able to show regression of the tumour for some parameter regimes. The modelling highlights a number of interesting aspects of the process that may be characterised further in the laboratory. The next model we present examines the initiation positions of blood vessel sprouts on an existing vessel, in a two-dimensional domain. This model hypothesises that a simple feedback inhibition mechanism may be used to describe the spacing of these sprouts with the inhibitor being produced by breakdown of the existing vessel's basement membrane. Finally, we have developed a stochastic model of blood vessel growth and anastomosis in three dimensions. The model has been implemented in C++, includes an openGL interface, and uses a novel algorithm for calculating proximity of the line segments representing a growing vessel. This choice of programming language and graphics interface allows for near-simultaneous calculation and visualisation of blood vessel networks using a contemporary personal computer. In addition the visualised results may be transformed interactively, and drop-down menus facilitate changes in the parameter values. Visualisation of results is of vital importance in the communication of mathematical information to a wide audience, and we aim to incorporate this philosophy in the thesis. As biological research further uncovers the intriguing processes involved in tumourinduced angiogenesis, we conclude with a comment from mathematical biologist Jim Murray, Mathematical biology is : : : the most exciting modern application of mathematics.
Resumo:
This thesis presents a mathematical model of the evaporation of colloidal sol droplets suspended within an atmosphere consisting of water vapour and air. The main purpose of this work is to investigate the causes of the morphologies arising within the powder collected from a spray dryer into which the precursor sol for Synroc™ is sprayed. The morphology is of significant importance for the application to storage of High Level Liquid Nuclear Waste. We begin by developing a model describing the evaporation of pure liquid droplets in order to establish a framework. This model is developed through the use of continuum mechanics and thermodynamic theory, and we focus on the specific case of pure water droplets. We establish a model considering a pure water vapour atmosphere, and then expand this model to account for the presence of an atmospheric gas such as air. We model colloidal particle-particle interactions and interactions between colloid and electrolyte using DLVO Theory and reaction kinetics, then incorporate these interactions into an expression for net interaction energy of a single particle with all other particles within the droplet. We account for the flow of material due to diffusion, advection, and interaction between species, and expand the pure liquid droplet models to account for the presence of these species. In addition, the process of colloidal agglomeration is modelled. To obtain solutions for our models, we develop a numerical algorithm based on the Control Volume method. To promote numerical stability, we formulate a new method of convergence acceleration. The results of a MATLAB™ code developed from this algorithm are compared with experimental data collected for the purposes of validation, and further analysis is done on the sensitivity of the solution to various controlling parameters.
Resumo:
This fourth edition of Communication, Cultural and Media Studies: The Key Concepts is an indispensible guide to the most important terms in the field. It offers clear explanations of the key concepts, exploring their origins, what they’re used for and why they provoke discussion. The author provides a multi-disciplinary explanation and assessment of the key concepts, from ‘authorship’ to ‘censorship’; ‘creative industries’ to ‘network theory’; ‘complexity’ to ‘visual culture’. The new edition of this classic text includes: * Over 200 entries including 50 new entries * All entries revised, rewritten and updated * Coverage of recent developments in the field * Insight into interactive media and the knowledge-based economy * A fully updated bibliography with 400 items and suggestions for further reading throughout the text
Resumo:
Compositionality is a frequently made assumption in linguistics, and yet many human subjects reveal highly non-compositional word associations when confronted with novel concept combinations. This article will show how a non-compositional account of concept combinations can be supplied by modelling them as interacting quantum systems.
Resumo:
This paper focuses on the turning point experiences that worked to transform the researcher during a preliminary consultation process to seek permission to conduct of a small pilot project on one Torres Strait Island. The project aimed to learn from parents how they support their children in their mathematics learning. Drawing on a community research design, a consultative meeting was held with one Torres Strait Islander community to discuss the possibility of piloting a small project that focused on working with parents and children to learn about early mathematics processes. Preliminary data indicated that parents use networks in their community. It highlighted the funds of knowledge of mathematics that exist in the community and which are used to teach their children. Such knowledges are situated within a community’s unique histories, culture and the voices of the people. “Omei” tree means the Tree of Wisdom in the Island community.
Resumo:
The quick detection of abrupt (unknown) parameter changes in an observed hidden Markov model (HMM) is important in several applications. Motivated by the recent application of relative entropy concepts in the robust sequential change detection problem (and the related model selection problem), this paper proposes a sequential unknown change detection algorithm based on a relative entropy based HMM parameter estimator. Our proposed approach is able to overcome the lack of knowledge of post-change parameters, and is illustrated to have similar performance to the popular cumulative sum (CUSUM) algorithm (which requires knowledge of the post-change parameter values) when examined, on both simulated and real data, in a vision-based aircraft manoeuvre detection problem.
Resumo:
A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider numerical simulation of fractional model based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in advection and diffusion terms belong to the intervals (0; 1) or (1; 2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of the Riemann-Liouville and Gr¨unwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
A quantitative, quasi-experimental study of the effectiveness of computer-based scientific visualizations for concept learning on the part of Year 11 physics students (n=80) was conducted in six Queensland high school classrooms. Students’ gender and academic ability were also considered as factors in relation to the effectiveness of teaching with visualizations. Learning with visualizations was found to be equally effective as learning without them for all students, with no statistically significant difference in outcomes being observed for the group as a whole or on the academic ability dimension. Male students were found to learn significantly better with visualizations than without, while no such effect was observed for female students. This may give rise to some concern for the equity issues raised by introducing visualizations. Given that other research shows that students enjoy learning with visualizations and that their engagement with learning is enhanced, the finding that the learning outcomes are the same as for teaching without visualizations supports teachers’ use of visualizations.
Resumo:
This practice-led study explores different ways the subject of sustain-ability can be addressed within an Interactive Media Arts practice. The exploration encompasses three creative projects, Charmed, Distracted and e. Menura superba. Grounded in an ecological philosophy inspired by vegetarianism and the critical design philosophy of defuturing, the work shows how such a philosophical position can guide the redirection of practice. The concern for sustain-ability within my practice, and more generally the question of Interactive Media Arts and sustain-ability, I refer to as a problématique. The objective of this study is not one of finding an answer or a truth to an instrumentally posed question, but to explore the complexities of the problématique through a program of practice and intellectual investigation. The aim being to redirect my practice and to find a renewed raison d’être for practice through a process of opening up, encountering, and discovering otherwise unknown possibilities for practice. In the context of sustain-ability, this opening up of possibilities can be considered a form of futuring. A futuring I argue is only possible if the things we take for granted as integral aspects of our being, practices and life worlds, are revealed in ways that estrange them, rendering them visible in ways that allow questioning and change.
Resumo:
Contemporary mathematics education attempts to instil within learners the conceptualization of mathematics as a highly organized and inter-connected set of ideas. To support this, a means to graphically represent this organization of ideas is presented which reflects the cognitive mechanisms that shape a learner’s understanding. This organisation of information may then be analysed, with the view to informing the design of mathematics instruction in face-to-face and/or computer-mediated learning environments. However, this analysis requires significant work to develop both theory and practice.
Resumo:
Mathematical English is a unique language based on ordinary English, with the addition of highly stylised formal symbol systems. Some words have a redefined status. Mathematical English has its own lexicon, syntax, semantics and literature. It is more difficult to understand than ordinary English. Ability in basic interpersonal communication does not necessarily result in proficiency in the use of mathematical English. The complex nature of mathematical English may impact upon the ability of students to succeed in mathematical and numeracy assessment. This article presents a review of the literature about the complexities of mathematical English. It includes examples of more than fifty language features that have been shown to add to the challenge of interpreting mathematical texts. Awareness of the complexities of mathematical English is an essential skill needed by mathematics teachers when teaching and when designing assessment tasks.