984 resultados para image acquisition
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
PURPOSE: Juvenile idiopathic arthritis (JIA) has unknown etiology, and the involvement of the temporomandibular joint (TMJ) is rare in the early phase of the disease. The present article describes the use of computed tomography (CT) and magnetic resonance (MRI) images for the diagnosis of affected TMJ in JIA. CASE DESCRIPTION: A 12-year-old, female, Caucasian patient, with systemic rheumathoid arthritis and involvement of multiple joints was referred to the Imaging Center for TMJ assessment. The patient reported TMJ pain and limited opening of the mouth. The helical CT examination of the TMJ region showed asymmetric mandibular condyles, erosion of the right condyle and osteophyte-like formation. The MRI examination showed erosion of the right mandibular condyle, osteophytes, displacement without reduction and disruption of the articular disc. CONCLUSION: The disorders of the TMJ as a consequence of JIA must be carefully assessed by modern imaging methods such as CT and MRI. CT is very useful for the evaluation of discrete bone changes, which are not identified by conventional radiographs in the early phase of JIA. MRI allows the evaluation of soft tissues, the identification of acute articular inflammation and the differentiation between pannus and synovial hypertrophy.
Resumo:
Fifty Bursa of Fabricius (BF) were examined by conventional optical microscopy and digital images were acquired and processed using Matlab® 6.5 software. The Artificial Neuronal Network (ANN) was generated using Neuroshell® Classifier software and the optical and digital data were compared. The ANN was able to make a comparable classification of digital and optical scores. The use of ANN was able to classify correctly the majority of the follicles, reaching sensibility and specificity of 89% and 96%, respectively. When the follicles were scored and grouped in a binary fashion the sensibility increased to 90% and obtained the maximum value for the specificity of 92%. These results demonstrate that the use of digital image analysis and ANN is a useful tool for the pathological classification of the BF lymphoid depletion. In addition it provides objective results that allow measuring the dimension of the error in the diagnosis and classification therefore making comparison between databases feasible.
Resumo:
Background: The present work aims at the application of the decision theory to radiological image quality control ( QC) in diagnostic routine. The main problem addressed in the framework of decision theory is to accept or reject a film lot of a radiology service. The probability of each decision of a determined set of variables was obtained from the selected films. Methods: Based on a radiology service routine a decision probability function was determined for each considered group of combination characteristics. These characteristics were related to the film quality control. These parameters were also framed in a set of 8 possibilities, resulting in 256 possible decision rules. In order to determine a general utility application function to access the decision risk, we have used a simple unique parameter called r. The payoffs chosen were: diagnostic's result (correct/incorrect), cost (high/low), and patient satisfaction (yes/no) resulting in eight possible combinations. Results: Depending on the value of r, more or less risk will occur related to the decision-making. The utility function was evaluated in order to determine the probability of a decision. The decision was made with patients or administrators' opinions from a radiology service center. Conclusion: The model is a formal quantitative approach to make a decision related to the medical imaging quality, providing an instrument to discriminate what is really necessary to accept or reject a film or a film lot. The method presented herein can help to access the risk level of an incorrect radiological diagnosis decision.
Resumo:
Background: Chrysotile is considered less harmful to human health than other types of asbestos fibers. Its clearance from the lung is faster and, in comparison to amphibole forms of asbestos, chrysotile asbestos fail to accumulate in the lung tissue due to a mechanism involving fibers fragmentation in short pieces. Short exposure to chrysotile has not been associated with any histopathological alteration of lung tissue. Methods: The present work focuses on the association of small chrysotile fibers with interphasic and mitotic human lung cancer cells in culture, using for analyses confocal laser scanning microscopy and 3D reconstructions. The main goal was to perform the analysis of abnormalities in mitosis of fibers-containing cells as well as to quantify nuclear DNA content of treated cells during their recovery in fiber-free culture medium. Results: HK2 cells treated with chrysotile for 48 h and recovered in additional periods of 24, 48 and 72 h in normal medium showed increased frequency of multinucleated and apoptotic cells. DNA ploidy of the cells submitted to the same chrysotile treatment schedules showed enhanced aneuploidy values. The results were consistent with the high frequency of multipolar spindles observed and with the presence of fibers in the intercellular bridge during cytokinesis. Conclusion: The present data show that 48 h chrysotile exposure can cause centrosome amplification, apoptosis and aneuploid cell formation even when long periods of recovery were provided. Internalized fibers seem to interact with the chromatin during mitosis, and they could also interfere in cytokinesis, leading to cytokinesis failure which forms aneuploid or multinucleated cells with centrosome amplification.
Resumo:
Multispectral widefield optical imaging has the potential to improve early detection of oral cancer. The appropriate selection of illumination and collection conditions is required to maximize diagnostic ability. The goals of this study were to (i) evaluate image contrast between oral cancer/precancer and non-neoplastic mucosa for a variety of imaging modalities and illumination/collection conditions, and (ii) use classification algorithms to evaluate and compare the diagnostic utility of these modalities to discriminate cancers and precancers from normal tissue. Narrowband reflectance, autofluorescence, and polarized reflectance images were obtained from 61 patients and 11 normal volunteers. Image contrast was compared to identify modalities and conditions yielding greatest contrast. Image features were extracted and used to train and evaluate classification algorithms to discriminate tissue as non-neoplastic, dysplastic, or cancer; results were compared to histologic diagnosis. Autofluorescence imaging at 405-nm excitation provided the greatest image contrast, and the ratio of red-to-green fluorescence intensity computed from these images provided the best classification of dysplasia/cancer versus non-neoplastic tissue. A sensitivity of 100% and a specificity of 85% were achieved in the validation set. Multispectral widefield images can accurately distinguish neoplastic and non-neoplastic tissue; however, the ability to separate precancerous lesions from cancers with this technique was limited. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3516593]
Resumo:
In this work we investigate knowledge acquisition as performed by multiple agents interacting as they infer, under the presence of observation errors, respective models of a complex system. We focus the specific case in which, at each time step, each agent takes into account its current observation as well as the average of the models of its neighbors. The agents are connected by a network of interaction of Erdos-Renyi or Barabasi-Albert type. First, we investigate situations in which one of the agents has a different probability of observation error (higher or lower). It is shown that the influence of this special agent over the quality of the models inferred by the rest of the network can be substantial, varying linearly with the respective degree of the agent with different estimation error. In case the degree of this agent is taken as a respective fitness parameter, the effect of the different estimation error is even more pronounced, becoming superlinear. To complement our analysis, we provide the analytical solution of the overall performance of the system. We also investigate the knowledge acquisition dynamic when the agents are grouped into communities. We verify that the inclusion of edges between agents (within a community) having higher probability of observation error promotes the loss of quality in the estimation of the agents in the other communities.
Resumo:
Today several different unsupervised classification algorithms are commonly used to cluster similar patterns in a data set based only on its statistical properties. Specially in image data applications, self-organizing methods for unsupervised classification have been successfully applied for clustering pixels or group of pixels in order to perform segmentation tasks. The first important contribution of this paper refers to the development of a self-organizing method for data classification, named Enhanced Independent Component Analysis Mixture Model (EICAMM), which was built by proposing some modifications in the Independent Component Analysis Mixture Model (ICAMM). Such improvements were proposed by considering some of the model limitations as well as by analyzing how it should be improved in order to become more efficient. Moreover, a pre-processing methodology was also proposed, which is based on combining the Sparse Code Shrinkage (SCS) for image denoising and the Sobel edge detector. In the experiments of this work, the EICAMM and other self-organizing models were applied for segmenting images in their original and pre-processed versions. A comparative analysis showed satisfactory and competitive image segmentation results obtained by the proposals presented herein. (C) 2008 Published by Elsevier B.V.
Resumo:
The effects of different types of goal setting on motor skill learning were investigated. 100 individuals (64 men, 36 women) without experience in the performance of the Bachman ladder task participated. Participants were randomly assigned to one of five goal groups: (a) generic, (b) long-term, difficult, (c) long-term, easy; (d) short- and long-term, difficult, and (e) short- and long-term, easy. In the acquisition phase, participants performed 200 trials, and in the transfer and retention phases, each performed 50 trials. The dependent variable was the number of steps achieved in blocks of 10 trials. The results showed that the groups had similar performances in both the transfer and retention phases. Setting of generic, difficult, easy, long- and short-term, and self-setting goals all enabled similar effects on motor learning.
Resumo:
A technique for improving the performance of an OSNR monitor based on a polarisation nulling method with the downhill simplex algorithm is demonstrated. Establishing a compromise between accuracy and acquisition time, the monitor has been calibrated to 0.72 dB/390 ms and 0.98 dB/320 ms, over a range of nearly 21 dB. As far as is known, these are the best values achieved with such an OSNR monitoring method.
Resumo:
A way of coupling digital image correlation (to measure displacement fields) and boundary element method (to compute displacements and tractions along a crack surface) is presented herein. It allows for the identification of Young`s modulus and fracture parameters associated with a cohesive model. This procedure is illustrated to analyze the latter for an ordinary concrete in a three-point bend test on a notched beam. In view of measurement uncertainties, the results are deemed trustworthy thanks to the fact that numerous measurement points are accessible and used as entries to the identification procedure. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work discusses the determination of the breathing patterns in time sequence of images obtained from magnetic resonance (MR) and their use in the temporal registration of coronal and sagittal images. The registration is made without the use of any triggering information and any special gas to enhance the contrast. The temporal sequences of images are acquired in free breathing. The real movement of the lung has never been seen directly, as it is totally dependent on its surrounding muscles and collapses without them. The visualization of the lung in motion is an actual topic of research in medicine. The lung movement is not periodic and it is susceptible to variations in the degree of respiration. Compared to computerized tomography (CT), MR imaging involves longer acquisition times and it is preferable because it does not involve radiation. As coronal and sagittal sequences of images are orthogonal to each other, their intersection corresponds to a segment in the three-dimensional space. The registration is based on the analysis of this intersection segment. A time sequence of this intersection segment can be stacked, defining a two-dimension spatio-temporal (2DST) image. The algorithm proposed in this work can detect asynchronous movements of the internal lung structures and lung surrounding organs. It is assumed that the diaphragmatic movement is the principal movement and all the lung structures move almost synchronously. The synchronization is performed through a pattern named respiratory function. This pattern is obtained by processing a 2DST image. An interval Hough transform algorithm searches for synchronized movements with the respiratory function. A greedy active contour algorithm adjusts small discrepancies originated by asynchronous movements in the respiratory patterns. The output is a set of respiratory patterns. Finally, the composition of coronal and sagittal image pairs that are in the same breathing phase is realized by comparing of respiratory patterns originated from diaphragmatic and upper boundary surfaces. When available, the respiratory patterns associated to lung internal structures are also used. The results of the proposed method are compared with the pixel-by-pixel comparison method. The proposed method increases the number of registered pairs representing composed images and allows an easy check of the breathing phase. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a novel algorithm to successfully achieve viable integrity and authenticity addition and verification of n-frame DICOM medical images using cryptographic mechanisms. The aim of this work is the enhancement of DICOM security measures, especially for multiframe images. Current approaches have limitations that should be properly addressed for improved security. The algorithm proposed in this work uses data encryption to provide integrity and authenticity, along with digital signature. Relevant header data and digital signature are used as inputs to cipher the image. Therefore, one can only retrieve the original data if and only if the images and the inputs are correct. The encryption process itself is a cascading scheme, where a frame is ciphered with data related to the previous frames, generating also additional data on image integrity and authenticity. Decryption is similar to encryption, featuring also the standard security verification of the image. The implementation was done in JAVA, and a performance evaluation was carried out comparing the speed of the algorithm with other existing approaches. The evaluation showed a good performance of the algorithm, which is an encouraging result to use it in a real environment.
Resumo:
Particle-image velocimetry (PIV) was used to visualize the flow within an optically transparent pediatric ventricular assist device (PVAD) under development in our laboratory The device studied is a diaphragm type pulsatile pump with an ejection volume of 30 ml per beating cycle intended for temporary cardiac assistance as a bridge to transplantation or recovery in children. Of particular interest was the identification of flow patterns, including regions of stagnation and/or strong turbulence that often promote thrombus formation and hemolysis, which can degrade the usefulness of such devices. For this purpose, phase-locked PIV measurements were performed in planes parallel to the diaphram that drives the flow in the device. The test fluid was seeded with 10 Am polystyrene spheres, and the motion of these particles was used to determine the instantaneous flow velocity distribution in the illumination plane. These measurements revealed that flow velocities up to 1.0 m/s can occur within the PVAD. Phase-averaged velocity fields revealed the fixed vortices that drive the bulk flow within the device, though significant cycle-to-cycle variability was also quite apparent in the instantaneous velocity distributions, most notably during the filling phase. This cycle-to-cycle variability can generate strong turbulence that may contribute to greater hemolysis. Stagnation regions have also been observed between the input and output branches of the prototype, which can increase the likelihood of thrombus formation. [DOI: 10.1115/1.4001252]
Resumo:
The present work reports the porous alumina structures fabrication and their quantitative structural characteristics study based on mathematical morphology analysis by using the SEM images. The algorithm used in this work was implemented in 6.2 MATLAB software. Using the algorithm it was possible to obtain the distribution of maximum, minimum and average radius of the pores in porous alumina structures. Additionally, with the calculus of the area occupied by the pores, it was possible to obtain the porosity of the structures. The quantitative results could be obtained and related to the process fabrication characteristics, showing to be reliable and promising to be used to control the pores formation process. Then, this technique could provide a more accurate determination of pore sizes and pores distribution. (C) 2008 Elsevier Ltd. All rights reserved.