953 resultados para green procurement
Resumo:
Organisations are increasingly introducing sustainability policies to encourage environmentally friendly behaviours. Employees' green work climate perceptions (i.e., how they perceive their organisations' and co-workers' orientations towards environmental sustainability) may constitute psychological mechanisms that link such policies with behaviour. We present findings of a study on relationships among the perceived presence of organisational sustainability policies, green work climate perceptions and employee reports of their green behaviour (EGB). We hypothesised that green work climate perceptions mediate the positive relationship between employees' perceptions of the presence of a sustainability policy and EGB. Results based on data from 168 employees supported our hypotheses. Green work climate perceptions of the organisation and of co-workers differentially mediated the effects of the perceived presence of a sustainability policy on task-related and proactive EGB. These findings extend research on the efficacy of sustainability policies by shedding new light on the psychological mechanisms that link them with EGB.
Resumo:
In their call to action, Ones and Dilchert(2012) discuss several possible individual and some contextual determinants of employee green behavior that await examination by industrial and organizational I–O) psychologists. Although these authors briefly mentioned organizational climate, specifically ethical climate, as a potentially relevant predictor of green behaviors, they mostly emphasized the role of individual difference characteristics and traditional job performance determinants such as knowledge, skills, abilities, and other person factors (KSAOs).
Resumo:
The stay-green drought adaptation mechanism has been widely promoted as a way of improving grain yield and lodging resistance in sorghum [Sorghum bicolor (L.) Moench] and as a result has been the subject of many physiological and genetic studies. The relevance of these studies to elite sorghum hybrids is not clear given that they sample a limited number of environments and were conducted using inbred lines or relatively small numbers of experimental F-1 hybrids. In this study we investigated the relationship between stay-green and yield using data from breeding trials that sampled 1668 unique hybrid combinations and 23 environments whose mean yields varied from 2.3 to 10.5 t ha(-1). The strength and direction of the association between stay-green and grain yield varied with both environment and genetic background (male tester). The majority of associations were positive, particularly in environments with yields below 6 t ha(-1). As trial mean yield increased above 6 t ha(-1) there was a trend toward an increased number of negative associations; however, the number and magnitude of the positive associations were larger. Given that post-flowering drought is very commonly experienced by sorghum crops world wide and average yields are 1.2 and 2.5 t ha(-1) for the world and Australia, respectively, our results indicate that selection for stay-green in elite sorghum hybrids may be broadly beneficial for increasing yield in a wide range of environments.
Resumo:
We propose a conceptual model based on person–environment interaction, job performance, and motivational theories to structure a multilevel review of the employee green behavior (EGB) literature and agenda for future research. We differentiate between required EGB prescribed by the organization and voluntary EGB performed at the employees’ discretion. The review investigates institutional-, organizational-, leader-, team-, and employee-level antecedents and outcomes of EGB and factors that mediate and moderate these relationships. We offer suggestions to facilitate the development of the field, and call for future research to adopt a multilevel perspective and to investigate the outcomes of EGB.
Resumo:
The identification of "stay-green" in sorghum and its positive correlation with yield increases has encouraged attempts to incorporate "stay-green"-like traits into the genomes of other commercially important cereal crops. However, knowledge on the effects of "stay-green" expression on grain quality under extreme physiological stress is limited. This study examines impacts of "stay-green"-like expression on starch biosynthesis in barley (Hordeum vulgare L.) grain under mild, severe, and acute water stress conditions induced at anthesis. The proportions of long amylopectin branches and amylose branches in the grain of Flagship (a cultivar without "stay-green"-like characteristics) were higher at low water stress, suggesting that water stress affects starch biosynthesis in grain, probably due to early termination of grain fill. The changes in long branches can affect starch properties, such as the rates of enzymatic degradation, and hence its nutritional value. By contrast, grain from the "stay-green"-like cultivar (ND24260) did not show variation in starch molecular structure under the different water stress levels. The results indicate that the cultivar with "stay-green"-like traits has a greater potential to maintain starch biosynthesis and quality in grain during drought conditions, making the "stay-green"-like traits potentially useful in ensuring food security. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Public private partnerships (PPP) are widely used for construction project procurement. However, the briefing stage of PPP projects has been largely overlooked, although it has a far-reaching influence throughout the project life cycle. In response, we rectify this by exploring the critical factors involved. A set of 15 procurement-related factors are first identified from the existing literature. Then the effects of four background variables on the factors are tested with Hong Kong government data by an exploratory factor analysis extracting four major dimensions. The relationships between these dimensions and background variables indicate the need to take the background variables into account when ranking the factors. The ranking of the factors is then obtained by considering their weighted importance. Finally, the final practical value of the results is discussed.
Resumo:
Stay-green sorghum plants exhibit greener leaves and stems during the grain-filling period under water-limited conditions compared with their senescent counterparts, resulting in increased grain yield, grain mass, and lodging resistance. Stay-green has been mapped to a number of key chromosomal regions, including Stg1, Stg2, Stg3, and Stg4, but the functions of these individual quantitative trait loci (QTLs) remain unclear. The objective of this study was to show how positive effects of Stg QTLs on grain yield under drought can be explained as emergent consequences of their effects on temporal and spatial water-use patterns that result from changes in leaf-area dynamics. A set of four Stg near-isogenic lines (NILs) and their recurrent parent were grown in a range of field and semicontrolled experiments in southeast Queensland, Australia. These studies showed that the four Stg QTLs regulate canopy size by: (1) reducing tillering via increased size of lower leaves, (2) constraining the size of the upper leaves; and (3) in some cases, decreasing the number of leaves per culm. In addition, they variously affect leaf anatomy and root growth. The multiple pathways by which Stg QTLs modulate canopy development can result in considerable developmental plasticity. The reduction in canopy size associated with Stg QTLs reduced pre-flowering water demand, thereby increasing water availability during grain filling and, ultimately, grain yield. The generic physiological mechanisms underlying the stay-green trait suggest that similar Stg QTLs could enhance post-anthesis drought adaptation in other major cereals such as maize, wheat, and rice.
Resumo:
For many years Australian forest pathologists and other scientists have dreaded the arrival of the rust fungus, Puccinia psidii, commonly known as Myrtle Rust, in Australia. This pathogen eventually did arrive in that country and was first detected in New South Wales in 2010 on Willow Myrtle (Agonis flexuosa). It is generally accepted that it entered the country on an ornamental Myrtales* host brought in by a private nursery. Despite efforts to eradicate the invasive rust, it has already spread widely, now occurring along the east coast of Australia, from temperate areas in Victoria and southern North South Wales to tropical areas in north Queensland.
Resumo:
* Stay-green is an integrated drought adaptation trait characterized by a distinct green leaf phenotype during grain filling under terminal drought. We used sorghum (Sorghum bicolor), a repository of drought adaptation mechanisms, to elucidate the physiological and genetic mechanisms underpinning stay-green. * Near-isogenic sorghum lines (cv RTx7000) were characterized in a series of field and managed-environment trials (seven experiments and 14 environments) to determine the influence of four individual stay-green (Stg1–4) quantitative trait loci (QTLs) on canopy development, water use and grain yield under post-anthesis drought. * The Stg QTL decreased tillering and the size of upper leaves, which reduced canopy size at anthesis. This reduction in transpirational leaf area conserved soil water before anthesis for use during grain filling. Increased water uptake during grain filling of Stg near-isogenic lines (NILs) relative to RTx7000 resulted in higher post-anthesis biomass production, grain number and yield. Importantly, there was no consistent yield penalty associated with the Stg QTL in the irrigated control. * These results establish a link between the role of the Stg QTL in modifying canopy development and the subsequent impact on crop water use patterns and grain yield under terminal drought.
Resumo:
Environmentally benign and economical methods for the preparation of industrially important hydroxy acids and diacids were developed. The carboxylic acids, used in polyesters, alkyd resins, and polyamides, were obtained by the oxidation of the corresponding alcohols with hydrogen peroxide or air catalyzed by sodium tungstate or supported noble metals. These oxidations were carried out using water as a solvent. The alcohols are also a useful alternative to the conventional reactants, hydroxyaldehydes and cycloalkanes. The oxidation of 2,2-disubstituted propane-1,3-diols with hydrogen peroxide catalyzed by sodium tungstate afforded 2,2-disubstituted 3-hydroxypropanoic acids and 1,1-disubstituted ethane-1,2-diols as products. A computational study of the Baeyer-Villiger rearrangement of the intermediate 2,2-disubstituted 3-hydroxypropanals gave in-depth data of the mechanism of the reaction. Linear primary diols having chain length of at least six carbons were easily oxidized with hydrogen peroxide to linear dicarboxylic acids catalyzed by sodium tungstate. The Pt/C catalyzed air oxidation of 2,2-disubstituted propane-1,3-diols and linear primary diols afforded the highest yield of the corresponding hydroxy acids, while the Pt, Bi/C catalyzed oxidation of the diols afforded the highest yield of the corresponding diacids. The mechanism of the promoted oxidation was best described by the ensemble effect, and by the formation of a complex of the hydroxy and the carboxy groups of the hydroxy acids with bismuth atoms. The Pt, Bi/C catalyzed air oxidation of 2-substituted 2-hydroxymethylpropane-1,3-diols gave 2-substituted malonic acids by the decarboxylation of the corresponding triacids. Activated carbon was the best support and bismuth the most efficient promoter in the air oxidation of 2,2-dialkylpropane-1,3-diols to diacids. In oxidations carried out in organic solvents barium sulfate could be a valuable alternative to activated carbon as a non-flammable support. In the Pt/C catalyzed air oxidation of 2,2-disubstituted propane-1,3-diols to 2,2-disubstituted 3-hydroxypropanoic acids the small size of the 2-substituents enhanced the rate of the oxidation. When the potential of platinum of the catalyst was not controlled, the highest yield of the diacids in the Pt, Bi/C catalyzed air oxidation of 2,2-dialkylpropane-1,3-diols was obtained in the regime of mass transfer. The most favorable pH of the reaction mixture of the promoted oxidation was 10. The reaction temperature of 40°C prevented the decarboxylation of the diacids.
Resumo:
Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.
Resumo:
Stay-green plants retain green leaves longer after anthesis and can have improved yield, particularly under water limitation. As senescence is a dynamic process, genotypes with different senescence patterns may exhibit similar final normalised difference vegetative index (NDVI). By monitoring NDVI from as early as awn emergence to maturity, we demonstrate that analysing senescence dynamics improves insight into genotypic stay-green variation. A senescence evaluation tool was developed to fit a logistic function to NDVI data and used to analyse data from three environments for a wheat (Triticum aestivum L.) population whose lines contrast for stay-green. Key stay-green traits were estimated including, maximum NDVI, senescence rate and a trait integrating NDVI variation after anthesis, as well as the timing from anthesis to onset, midpoint and conclusion of senescence. The integrative trait and the timing to onset and mid-senescence exhibited high positive correlations with yield and a high heritability in the three studied environments. Senescence rate was correlated with yield in some environments, whereas maximum NDVI was associated with yield in a drought-stressed environment. Where resources preclude frequent measurements, we found that NDVI measurements may be restricted to the period of rapid senescence, but caution is required when dealing with lines of different phenology. In contrast, regular monitoring during the whole period after flowering allows the estimation of senescence dynamics traits that may be reliably compared across genotypes and environments. We anticipate that selection for stay-green traits will enhance genetic progress towards high-yielding, stay-green germplasm.
Resumo:
Post-rainy sorghum (Sorghum bicolor (L.) Moench) production underpins the livelihood of millions in the semiarid tropics, where the crop is affected by drought. Drought scenarios have been classified and quantified using crop simulation. In this report, variation in traits that hypothetically contribute to drought adaptation (plant growth dynamics, canopy and root water conducting capacity, drought stress responses) were virtually introgressed into the most common post-rainy sorghum genotype, and the influence of these traits on plant growth, development, and grain and stover yield were simulated across different scenarios. Limited transpiration rates under high vapour pressure deficit had the highest positive effect on production, especially combined with enhanced water extraction capacity at the root level. Variability in leaf development (smaller canopy size, later plant vigour or increased leaf appearance rate) also increased grain yield under severe drought, although it caused a stover yield trade-off under milder stress. Although the leaf development response to soil drying varied, this trait had only a modest benefit on crop production across all stress scenarios. Closer dissection of the model outputs showed that under water limitation, grain yield was largely determined by the amount of water availability after anthesis, and this relationship became closer with stress severity. All traits investigated increased water availability after anthesis and caused a delay in leaf senescence and led to a ‘stay-green’ phenotype. In conclusion, we showed that breeding success remained highly probabilistic; maximum resilience and economic benefits depended on drought frequency. Maximum potential could be explored by specific combinations of traits.
Resumo:
Green building incentives are important to promoting green building. However, it lacks a systematic review of existing knowledge. This paper aims to elicit the common themes in studies of green building incentives through a systematic review. It is found that the common research areas into green building incentives are incentive categorisation, its effectiveness on promoting green building development, criticism of current green incentive implementation and strategies for improving green building incentives. Green building incentives are categorised into external and internal incentives. The external incentive is a forced choice whereby beneficiaries are required to fulfil specified conditions or requirements before benefitting, while the internal incentive allows beneficiaries to be incentivised out of volition because of the appeal of the benefits of green buildings. The external incentives, which are largely provided by the government, are divided into financial and non-financial incentives. It is found that owners are more incentivised by non-financial incentives. In terms of effectiveness, both external and internal incentives are important instruments for promoting green building, although it is not clear which are the more effective. Furthermore, the review uncovered criticisms of external green building incentives, which mainly focus on shortcomings in administering the incentives by the government. The strategies for improving green building incentives were also found, the most important of these being the need for the government to redirect its approach of providing incentives so that owners can be encouraged to pursue green building. The review findings signify the importance of the government in relation to green building incentives. Further research areas that could expand the knowledge of green building incentives are also recommended.
Resumo:
The goal of this research is to understand the function of allelic variation of genes underpinning the stay-green drought adaptation trait in sorghum in order to enhance yield in water-limited environments. Stay-green, a delayed leaf senescence phenotype in sorghum, is primarily an emergent consequence of the improved balance between the supply and demand of water. Positional and functional fine-mapping of candidate genes associated with stay-green in sorghum is the focus of an international research partnership between Australian (UQ/DAFFQ) and US (Texas A&M University) scientists. Stay-green was initially mapped to four chromosomal regions (Stg1, Stg2, Stg3, and Stg4) by a number of research groups in the US and Australia. Physiological dissection of near-isolines containing single introgressions of Stg QTL (Stg1-4) indicate that these QTL reduce water demand before flowering by constricting the size of the canopy, thereby increasing water availability during grain filling and, ultimately, grain yield. Stg and root angle QTL are also co-located and, together with crop water use data, suggest the role of roots in the stay-green phenomenon. Candidate genes have been identified in Stg1-4, including genes from the PIN family of auxin efflux carriers in Stg1 and Stg2, with 10 of 11 PIN genes in sorghum co-locating with Stg QTL. Modified gene expression in some of these PIN candidates in the stay-green compared with the senescent types has been found in preliminary RNA expression profiling studies. Further proof-of-function studies are underway, including comparative genomics, SNP analysis to assess diversity at candidate genes, reverse genetics and transformation.