927 resultados para electrochemical noise analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent identification of non-thermal plasmas using EISCAT data has been made possible by their occurrence during large, short-lived flow bursts. For steady, yet rapid, ion convection the only available signature is the shape of the spectrum, which is unreliable because it is open to distortion by noise and sampling uncertainty and can be mimicked by other phenomena. Nevertheless, spectral shape does give an indication of the presence of non-thermal plasma, and the characteristic shape has been observed for long periods (of the order of an hour or more) in some experiments. To evaluate this type of event properly one needs to compare it to what would be expected theoretically. Predictions have been made using the coupled thermosphere-ionosphere model developed at University College London and the University of Sheffield to show where and when non-Maxwellian plasmas would be expected in the auroral zone. Geometrical and other factors then govern whether these are detectable by radar. The results are applicable to any incoherent scatter radar in this area, but the work presented here concentrates on predictions with regard to experiments on the EISCAT facility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predictions of twenty-first century sea level change show strong regional variation. Regional sea level change observed by satellite altimetry since 1993 is also not spatially homogenous. By comparison with historical and pre-industrial control simulations using the atmosphere–ocean general circulation models (AOGCMs) of the CMIP5 project, we conclude that the observed pattern is generally dominated by unforced (internal generated) variability, although some regions, especially in the Southern Ocean, may already show an externally forced response. Simulated unforced variability cannot explain the observed trends in the tropical Pacific, but we suggest that this is due to inadequate simulation of variability by CMIP5 AOGCMs, rather than evidence of anthropogenic change. We apply the method of pattern scaling to projections of sea level change and show that it gives accurate estimates of future local sea level change in response to anthropogenic forcing as simulated by the AOGCMs under RCP scenarios, implying that the pattern will remain stable in future decades. We note, however, that use of a single integration to evaluate the performance of the pattern-scaling method tends to exaggerate its accuracy. We find that ocean volume mean temperature is generally a better predictor than global mean surface temperature of the magnitude of sea level change, and that the pattern is very similar under the different RCPs for a given model. We determine that the forced signal will be detectable above the noise of unforced internal variability within the next decade globally and may already be detectable in the tropical Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data. New method: We propose a complete pipeline for the cluster analysis of ERP data. To increase the signalto-noise (SNR) ratio of the raw single-trials, we used a denoising method based on Empirical Mode Decomposition (EMD). Next, we used a bootstrap-based method to determine the number of clusters, through a measure called the Stability Index (SI). We then used a clustering algorithm based on a Genetic Algorithm (GA)to define initial cluster centroids for subsequent k-means clustering. Finally, we visualised the clustering results through a scheme based on Principal Component Analysis (PCA). Results: After validating the pipeline on simulated data, we tested it on data from two experiments – a P300 speller paradigm on a single subject and a language processing study on 25 subjects. Results revealed evidence for the existence of 6 clusters in one experimental condition from the language processing study. Further, a two-way chi-square test revealed an influence of subject on cluster membership.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the in vivo assessment of functional activity of the cerebral cortex as well as in the field of brain–computer interface (BCI) research. A common challenge for the utilization of fNIRS in these areas is a stable and reliable investigation of the spatio-temporal hemodynamic patterns. However, the recorded patterns may be influenced and superimposed by signals generated from physiological processes, resulting in an inaccurate estimation of the cortical activity. Up to now only a few studies have investigated these influences, and still less has been attempted to remove/reduce these influences. The present study aims to gain insights into the reduction of physiological rhythms in hemodynamic signals (oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb)). Approach. We introduce the use of three different signal processing approaches (spatial filtering, a common average reference (CAR) method; independent component analysis (ICA); and transfer function (TF) models) to reduce the influence of respiratory and blood pressure (BP) rhythms on the hemodynamic responses. Main results. All approaches produce large reductions in BP and respiration influences on the oxy-Hb signals and, therefore, improve the contrast-to-noise ratio (CNR). In contrast, for deoxy-Hb signals CAR and ICA did not improve the CNR. However, for the TF approach, a CNR-improvement in deoxy-Hb can also be found. Significance. The present study investigates the application of different signal processing approaches to reduce the influences of physiological rhythms on the hemodynamic responses. In addition to the identification of the best signal processing method, we also show the importance of noise reduction in fNIRS data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social network has gained remarkable attention in the last decade. Accessing social network sites such as Twitter, Facebook LinkedIn and Google+ through the internet and the web 2.0 technologies has become more affordable. People are becoming more interested in and relying on social network for information, news and opinion of other users on diverse subject matters. The heavy reliance on social network sites causes them to generate massive data characterised by three computational issues namely; size, noise and dynamism. These issues often make social network data very complex to analyse manually, resulting in the pertinent use of computational means of analysing them. Data mining provides a wide range of techniques for detecting useful knowledge from massive datasets like trends, patterns and rules [44]. Data mining techniques are used for information retrieval, statistical modelling and machine learning. These techniques employ data pre-processing, data analysis, and data interpretation processes in the course of data analysis. This survey discusses different data mining techniques used in mining diverse aspects of the social network over decades going from the historical techniques to the up-to-date models, including our novel technique named TRCM. All the techniques covered in this survey are listed in the Table.1 including the tools employed as well as names of their authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studying joint noise is an important parameter for diagnosing temporomandibular dysfunction. In this study, eight groups (n=9) were formed according to joint dysfunction classification, provided by employing vibration analysis equipment. Parameters for analyzing joint noise were: total vibration energy, peak amplitude, and peak frequency. Mouth opening range was also analyzed. Statistical analysis results for each parameter were significant at 1 %. Each analyzed group presented different noise characteristics. This allowed for inclusion of the groups within a determined value category. The patient group with normal condyle/disk relationship always presented the lowest values. The type of joint noise was characterized by analyzing total integral noise, peak amplitude, peak frequency, and mouth opening. Analyzing joint noise using electrovibratography suggests the type of joint dysfunction and may help to establish a diagnosis, as well as a treatment plan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtained long-slit spectra of high signal-to-noise ratio of the galaxy M32 with the Gemini Multi-Object Spectrograph at the Gemini-North telescope. We analysed the integrated spectra by means of full spectral fitting in order to extract the mixture of stellar populations that best represents its composite nature. Three different galactic radii were analysed, from the nuclear region out to 2 arcmin from the centre. This allows us to compare, for the first time, the results of integrated light spectroscopy with those of resolved colour-magnitude diagrams from the literature. As a main result we propose that an ancient and an intermediate-age population co-exist in M32, and that the balance between these two populations change between the nucleus and outside one effective radius (1r(eff)) in the sense that the contribution from the intermediate population is larger at the nuclear region. We retrieve a smaller signal of a young population at all radii whose origin is unclear and may be a contamination from horizontal branch stars, such as the ones identified by Brown et al. in the nuclear region. We compare our metallicity distribution function for a region 1 to 2 arcmin from the centre to the one obtained with photometric data by Grillmair et al. Both distributions are broad, but our spectroscopically derived distribution has a significant component with [Z/Z(circle dot)] <= -1, which is not found by Grillmair et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we introduce a new hierarchical surface decomposition method for multiscale analysis of surface meshes. In contrast to other multiresolution methods, our approach relies on spectral properties of the surface to build a binary hierarchical decomposition. Namely, we utilize the first nontrivial eigenfunction of the Laplace-Beltrami operator to recursively decompose the surface. For this reason we coin our surface decomposition the Fiedler tree. Using the Fiedler tree ensures a number of attractive properties, including: mesh-independent decomposition, well-formed and nearly equi-areal surface patches, and noise robustness. We show how the evenly distributed patches can be exploited for generating multiresolution high quality uniform meshes. Additionally, our decomposition permits a natural means for carrying out wavelet methods, resulting in an intuitive method for producing feature-sensitive meshes at multiple scales. Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work the results of a spectroscopic study of the southern field narrow-line Be star HD 171054 are presented. High dispersion and signal-to-noise ratio spectra allowed the estimation of the fundamental photospheric parameters such as the projected rotational velocity, effective temperature and superficial gravity from non-LTE stellar atmosphere models. From these parameters and microturbulence, the abundances of He, C, N, O, Mg, Al and Si for this object are estimated. Results show that C is depleted whereas N is overabundant compared with the sun and OB stars in the solar vicinity. Oxygen and helium are close to the solar value. Magnesium is down by 0.43 dex and aluminium and silicon are overabundant. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a novel methodology to shape boundary characterization, where a shape is modeled into a small-world complex network. It uses degree and joint degree measurements in a dynamic evolution network to compose a set of shape descriptors. The proposed shape characterization method has all efficient power of shape characterization, it is robust, noise tolerant, scale invariant and rotation invariant. A leaf plant classification experiment is presented on three image databases in order to evaluate the method and compare it with other descriptors in the literature (Fourier descriptors, Curvature, Zernike moments and multiscale fractal dimension). (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a study of AISI 1040 steel corrosion in aqueous electrolyte of acetic acid buffer containing 3.1 and 31 x 10(-3) mol dm(-3) of Na(2)S in both the presence and absence of 3.5 wt.% NaCl. This investigation of steel corrosion was carried out using potential polarization, and open-circuit and in situ optical microscopy. The morphological analysis and classification of types of surface corrosion damage by digital image processing reveals grain boundary corrosion and shows a non-uniform sulfide film growth, which occurs preferentially over pearlitic grains through successive formation and dissolution of the film. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a novel approach in order to increase the recognition power of Multiscale Fractal Dimension (MFD) techniques, when applied to image classification. The proposal uses Functional Data Analysis (FDA) with the aim of enhancing the MFD technique precision achieving a more representative descriptors vector, capable of recognizing and characterizing more precisely objects in an image. FDA is applied to signatures extracted by using the Bouligand-Minkowsky MFD technique in the generation of a descriptors vector from them. For the evaluation of the obtained improvement, an experiment using two datasets of objects was carried out. A dataset was used of characters shapes (26 characters of the Latin alphabet) carrying different levels of controlled noise and a dataset of fish images contours. A comparison with the use of the well-known methods of Fourier and wavelets descriptors was performed with the aim of verifying the performance of FDA method. The descriptor vectors were submitted to Linear Discriminant Analysis (LDA) classification method and we compared the correctness rate in the classification process among the descriptors methods. The results demonstrate that FDA overcomes the literature methods (Fourier and wavelets) in the processing of information extracted from the MFD signature. In this way, the proposed method can be considered as an interesting choice for pattern recognition and image classification using fractal analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface roughness is an important geomorphological variable which has been used in the Earth and planetary sciences to infer material properties, current/past processes, and the time elapsed since formation. No single definition exists; however, within the context of geomorphometry, we use surface roughness as an expression of the variability of a topographic surface at a given scale, where the scale of analysis is determined by the size of the landforms or geomorphic features of interest. Six techniques for the calculation of surface roughness were selected for an assessment of the parameter`s behavior at different spatial scales and data-set resolutions. Area ratio operated independently of scale, providing consistent results across spatial resolutions. Vector dispersion produced results with increasing roughness and homogenization of terrain at coarser resolutions and larger window sizes. Standard deviation of residual topography highlighted local features and did not detect regional relief. Standard deviation of elevation correctly identified breaks of slope and was good at detecting regional relief. Standard deviation of slope (SD(slope)) also correctly identified smooth sloping areas and breaks of slope, providing the best results for geomorphological analysis. Standard deviation of profile curvature identified the breaks of slope, although not as strongly as SD(slope), and it is sensitive to noise and spurious data. In general, SD(slope) offered good performance at a variety of scales, while the simplicity of calculation is perhaps its single greatest benefit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increased surface area of copper electrodes upon applying a suitable potential protocol was characterized by atomic force microscopy images. Scanning electrochemical microscopy was used to demonstrate the enhanced reactivity of the generated surface. The modified electrode showed excellent catalytic activity towards nitrite reduction in acidic medium (pH 2). This new platform was used in the development of a fast and simple voltammetric method for nitrite determination. Commercial and rainwater spiked samples were analyzed and the data showed an excellent agreement with those obtained with a reference spectrophotometric method (Griess reaction) at a confidence level of 95% (Student`s t-test).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Successful coupling of electrochemical preconcentration (EPC) to capillary electrophoresis (CE) with contactless conductivity detection (C(4)D) is reported for the first time. The EPC-CE interface comprises a dual glassy carbon electrode (GCE) block, a spacer and an upper block with flow inlet and outlet, pseudo-reference electrode and a fitting for the CE silica column, consisting of an orifice perpendicular to the surface of a glassy carbon electrode with a bushing inside to ensure a tight press fit. The end of the capillary in contact with the GCE is slant polished, thus defining a reproducible distance from the electrode surface to the column bore. First results with EPC-CE-C(4)D are very promising, as revealed by enrichment factors of two orders of magnitude for Tl, Cu, Pb and Cd ion peak area signals. Detection limits for 10 min deposition time fall around 20 nmol L(-1) with linear calibration curves over a wide range. Besides preconcentration, easy matrix exchange between accumulation and stripping/injection favors procedures like sample cleanup and optimization of pH, ionic strength and complexing power. This was demonstrated for highly saline samples by using a low conductivity buffer for stripping/injection to improve separation and promote field-enhanced sample stacking during electromigration along the capillary. (C) 2010 Elsevier B.V. All rights reserved.