Fiedler trees for multiscale surface analysis


Autoria(s): BERGER, Matt; NONATO, Luis Gustavo; PASCUCCI, Valerio; SILVA, Claudio T.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

In this work we introduce a new hierarchical surface decomposition method for multiscale analysis of surface meshes. In contrast to other multiresolution methods, our approach relies on spectral properties of the surface to build a binary hierarchical decomposition. Namely, we utilize the first nontrivial eigenfunction of the Laplace-Beltrami operator to recursively decompose the surface. For this reason we coin our surface decomposition the Fiedler tree. Using the Fiedler tree ensures a number of attractive properties, including: mesh-independent decomposition, well-formed and nearly equi-areal surface patches, and noise robustness. We show how the evenly distributed patches can be exploited for generating multiresolution high quality uniform meshes. Additionally, our decomposition permits a natural means for carrying out wavelet methods, resulting in an intuitive method for producing feature-sensitive meshes at multiple scales. Published by Elsevier Ltd.

U.S. National Science Foundation (NSF)

National Science Foundation (NSF)[IIS-0905385]

National Science Foundation (NSF)[CNS-0855167]

U.S. National Science Foundation (NSF)

National Science Foundation (NSF)[IIS-0844546]

U.S. National Science Foundation (NSF)

U.S. National Science Foundation (NSF)

National Science Foundation (NSF)[ATM-0835821]

U.S. National Science Foundation (NSF)

National Science Foundation (NSF)[CNS-0751152]

U.S. National Science Foundation (NSF)

National Science Foundation (NSF)[OCE-0424602]

U.S. National Science Foundation (NSF)

National Science Foundation (NSF)[CNS-0514485]

National Science Foundation (NSF)[IIS-0513692]

U.S. National Science Foundation (NSF)

U.S. National Science Foundation (NSF)

National Science Foundation (NSF)[CNS-0524096]

National Science Foundation (NSF)[CCF-0401498]

U.S. National Science Foundation (NSF)

U.S. National Science Foundation (NSF)

National Science Foundation (NSF)[OISE-0405402]

U.S. National Science Foundation (NSF)

National Science Foundation (NSF)[CCF-0528201]

U.S. National Science Foundation (NSF)

National Science Foundation (NSF)[CNS-0551724]

U.S. Department of Energy (DOE)

Department of Energy (DOE)

Fapesp-Brazil[2008/03349-6]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Identificador

COMPUTERS & GRAPHICS-UK, v.34, n.3, Special Issue, p.272-281, 2010

0097-8493

http://producao.usp.br/handle/BDPI/28920

10.1016/j.cag.2010.03.009

http://dx.doi.org/10.1016/j.cag.2010.03.009

Idioma(s)

eng

Publicador

PERGAMON-ELSEVIER SCIENCE LTD

Relação

Computers & Graphics-uk

Direitos

restrictedAccess

Copyright PERGAMON-ELSEVIER SCIENCE LTD

Palavras-Chave #Multiscale representation #Multiresolution shape analysis #Surface partition #SPECTRAL BISECTION #SEGMENTATION #MESHES #Computer Science, Software Engineering
Tipo

article

original article

publishedVersion