Fiedler trees for multiscale surface analysis
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
In this work we introduce a new hierarchical surface decomposition method for multiscale analysis of surface meshes. In contrast to other multiresolution methods, our approach relies on spectral properties of the surface to build a binary hierarchical decomposition. Namely, we utilize the first nontrivial eigenfunction of the Laplace-Beltrami operator to recursively decompose the surface. For this reason we coin our surface decomposition the Fiedler tree. Using the Fiedler tree ensures a number of attractive properties, including: mesh-independent decomposition, well-formed and nearly equi-areal surface patches, and noise robustness. We show how the evenly distributed patches can be exploited for generating multiresolution high quality uniform meshes. Additionally, our decomposition permits a natural means for carrying out wavelet methods, resulting in an intuitive method for producing feature-sensitive meshes at multiple scales. Published by Elsevier Ltd. U.S. National Science Foundation (NSF) National Science Foundation (NSF)[IIS-0905385] National Science Foundation (NSF)[CNS-0855167] U.S. National Science Foundation (NSF) National Science Foundation (NSF)[IIS-0844546] U.S. National Science Foundation (NSF) U.S. National Science Foundation (NSF) National Science Foundation (NSF)[ATM-0835821] U.S. National Science Foundation (NSF) National Science Foundation (NSF)[CNS-0751152] U.S. National Science Foundation (NSF) National Science Foundation (NSF)[OCE-0424602] U.S. National Science Foundation (NSF) National Science Foundation (NSF)[CNS-0514485] National Science Foundation (NSF)[IIS-0513692] U.S. National Science Foundation (NSF) U.S. National Science Foundation (NSF) National Science Foundation (NSF)[CNS-0524096] National Science Foundation (NSF)[CCF-0401498] U.S. National Science Foundation (NSF) U.S. National Science Foundation (NSF) National Science Foundation (NSF)[OISE-0405402] U.S. National Science Foundation (NSF) National Science Foundation (NSF)[CCF-0528201] U.S. National Science Foundation (NSF) National Science Foundation (NSF)[CNS-0551724] U.S. Department of Energy (DOE) Department of Energy (DOE) Fapesp-Brazil[2008/03349-6] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
COMPUTERS & GRAPHICS-UK, v.34, n.3, Special Issue, p.272-281, 2010 0097-8493 http://producao.usp.br/handle/BDPI/28920 10.1016/j.cag.2010.03.009 |
Idioma(s) |
eng |
Publicador |
PERGAMON-ELSEVIER SCIENCE LTD |
Relação |
Computers & Graphics-uk |
Direitos |
restrictedAccess Copyright PERGAMON-ELSEVIER SCIENCE LTD |
Palavras-Chave | #Multiscale representation #Multiresolution shape analysis #Surface partition #SPECTRAL BISECTION #SEGMENTATION #MESHES #Computer Science, Software Engineering |
Tipo |
article original article publishedVersion |