975 resultados para dielectric film system
Resumo:
Liquid nitrogen is very important for MBE system. Most MBE systems use the liquid nitrogen to absorb the impurity molecules. If MBE cryoshroud is lack of liquid nitrogen, the pressure of the growth chamber will grow. This will affect the film quality. But too much liquid nitrogen is a waste. We have developed a liquid nitrogen flowrate alarm system to monitor the liquid nitrogen status in MBE cryoshroud. In this method, a temperature sensor is placed at the end of the cryoshroud. The temperature varies with changing of the liquid nitrogen status in cryoshroud. If the liquid nitrogen level in the cryoshroud is too low or too high, the LNFA will send out an alarm to warn the user to adjust the liquid nitrogen flowrate. In our experiments, we found this method works well, and the temperature responds sensitively. With the help of this system, people can view the liquid nitrogen status of the entire growth process. Compare with other method. it is very cheap.
Resumo:
The occurrences of diapirs, gas-filled zones and gas plumes in seawater in Qiongdongnan Basin of South China Sea indicate that there may exist seepage system gas-hydrate reservoirs. Assuming there has a methane venting zone of 1500 m in diameter, and the methane flux is 1000 kmol/a, and the temperature of methane hydrate-bearing sediments ranges from 3 degrees C to 20 degrees C, then according to the hydrate film growth theory, by numerical simulation, this paper computes the temperatures and velocities in 0 mbsf, 100 mbsf, 200 mbsf, 425 mbsf over discrete length, and gives the change charts. The results show that the cementation velocity in sediments matrix of methane hydrate is about 0.2 nm/s, and the seepage system will evolve into diffusion system over probably 35000 years. Meanwhile, the methane hydrate growth velocity in leakage system is 20 similar to 40 times faster than in diffusion system.
Resumo:
Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.
Resumo:
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO,), TA (bottom layer was pure TiO,, surface layer was Ag modified), TT (pure TiO, thin film) and AA (TiO, thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (I-ph). LSV confirmed the existence of Ago state in the TiO, thin film. SEM and XRD experiments indicated that the sizes of the TiO,, nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.
Resumo:
Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.
Resumo:
Photoinduced anisotropy in bacteriorhodopsin (BR) film arises from the selective bleaching of BR molecules to linearly polarized light. The kinetics of photoinduced anisotropy excited by single and two pumping beams are investigated theoretically and experimentally. Compared with a single pumping beam (650 nm), which produces comparatively small photoinduced anisotropy, dual-wavelength linearly polarized pumping beams (650 and 405 nm) can obviously change the photoinduced anisotropy. When the polarization orientation of the 405 ran pumping beam is perpendicular to that of the 650 nm pumping beam, the peak and steady values of the photoinduced anisotropy kinetic curves are remarkably enhanced. But when the two pumping beams have parallel polarization orientation, the peak and steady values are restrained. At a fixed intensity of the 650 nm pumping beam, there exists an optimal intensity for the 405 nm pumping beam to maximize the value of the photoinduced anisotropy. The photoinduced transmittance of the polarizer-BR-analyzer system is modulated by the polarization angle of the 405 nm pumping beam in an approximate-cosine form. (C) 2008 Optical Society of America.
Resumo:
Photoinduced anisotropy in bacteriorhodopsin (BR) film is based on photoanisotropic selective bleaching of BR molecules under linearly polarized excitation light. It is modulated by the polarization orientation of the linearly polarized light. The anisotropic information recorded in the BR film is read by a circularly polarized light, which is in turn converted into an elliptical polarized light by the BR film. The rotation angle and the ellipticity of the elliptical polarized light are dependent on the polarization orientation of the linearly polarized excitation light. A phase-shifting interferometer based on the photoinduced anisotropy of BR film is presented theoretically and experimentally. Phase shift is controlled by the polarization orientation of the external excitation light, thus, the phase shift can be controlled without moving parts inside the interferometer, which contributes to the mechanical stability of the system.
Resumo:
A direct ion beam deposition system designed for heteroepitaxy at a low substrate temperature and for the growth of metastable compounds has been constructed and tested. The system consists of two mass-resolved low-energy ion beams which merge at the target with an incident energy range 50-25 000 eV. Each ion beam uses a Freeman ion source for ion production and a magnetic sector for mass filtering. While a magnetic quadrupole lens is used in one beam for ion optics, an electrostatic quadrupole lens focuses the other beam. Both focusing approaches provide a current density more than 100-mu-A/cm2, although the magnetic quadrupole gives a better performance for ion energies below 200 eV. The typical current of each beam reaches more than 0.3 mA at 100 eV, with a ribbon beam of about 0.3-0.5 x 2 cm2. The target is housed in an ultrahigh vacuum chamber with a base pressure of 1 x 10(-7) Pa and a typical pressure of 5 x 10(-6) Pa when a noncondensable beam like argon is brought into the chamber. During deposition, the target can be heated to 800-degrees-C and scanned mechanically with an electronic scanning control unit. The dual beam system has been used to grow GaN using a Ga+ and a N+ beam, and to study the oxygen and hydrogen ion beam bombardment effects during carbon ion beam deposition. The results showed that the simultaneous arrival of two beams at the target is particularly useful in compound formation and in elucidation of growth mechanisms.
Resumo:
By using the mass-analyzed low energy dual ion beam deposition technique, a high quality epitaxial, insulating cerium dioxide thin film with a thickness of about 2000 Angstrom, has been grown on a silicon (111) substrate. The component species, cerium and oxygen, are homogeneous in depth, and have the correct stoichiometry for CeO2. X-ray double-crystal diffraction shows that the full width at half maximum of the (222) and (111) peaks of the film are less than 23 and 32 s, respectively, confirming that the film is a perfect single crystal. (C) 1995 American Institute of Physics.
Resumo:
Boron-doped hydrogenated silicon films with different gaseous doping ratios (B_2H_6/SiH_4) were deposited in a plasma-enhanced chemical vapor deposition (PECVD) system. The microstructure of the films was investigated by atomic force microscopy (AFM) and Raman scattering spectroscopy. The electrical properties of the films were characterized by their room temperature electrical conductivity (σ) and the activation energy (E_a). The results show that with an increasing gaseous doping ratio, the silicon films transfer from a microcrystalline to an amorphous phase, and corresponding changes in the electrical properties were observed. The thin boron-doped silicon layers were fabricated as recombination layers in tunnel junctions. The measurements of the Ⅰ-Ⅴ characteristics and the transparency spectra of the junctions indicate that the best gaseous doping ratio of the recombination layer is 0.04, and the film deposited under that condition is amorphous silicon with a small amount of crystallites embedded in it. The junction with such a recombination layer has a small resistance, a nearly ohmic contact, and a negligible optical absorption.
Resumo:
The growth of Bi2Ti2O7 films with (111) orientation on Si(100) substrate by atmospheric pressure metal-organic chemical vapor deposition(APMOCVD) technique at 480similar to550 degreesC is presented. The films were characterized by X-ray diffraction analysis, atomic force microscopy and electron diffraction. The results show high quality Bi2Ti2O7 films with smooth shinning surface. The dielectric properties and C-V characterization of the films were studied. The dielectric constant (epsilon) and loss tangent (tgdelta) were found to be 180 and 0.01 respectively. The charge storage density was 31.9fC/mum(2). The resistivity is higher than 1x10(12) Omega. .cm under the applied voltage of 5V. The Bi2Ti2O7 films are suitable to be used as a new insulating gate material in dynamic random access memory (DRAM).
Resumo:
We propose a hybrid waveguide-plasmon system consisting of gold pillar arrays on top of a dielectric waveguide. The formation of extraordinary transmissions induced by the hybrid waveguide-plasmon resonances is investigated by rigorous coupled-wave analysis. The characteristics of the hybrid resonances can be predicted by introducing the photonic crystal slab theory. Extremely narrow absorption peaks and the electromagnetically induced transparency-like optical property are demonstrated in our hybrid system. (C) 2010 Optical Society of America
Resumo:
The nonmodal linear stability of a falling film over a porous inclined plane has been investigated. The base flow is driven by gravity. We use Darcy's law to describe the flow in the porous medium. A simplified one-sided model is used to describe the fluid flow. In this model, the influence of the porous layer on the flow in the film can be identified by a parameter beta. The instabilities of a falling film have traditionally been investigated by linearizing the governing equations and testing for unstable eigenvalues of the linearized problem. However, the results of eigenvalue analysis agree poorly in many cases with experiments, especially for shear flows. In the present paper, we have studied the linear stability of three-dimensional disturbances using the nonmodal stability theory. Particular attentions are paid to the transient behavior rather than the long time behavior of eigenmodes predicted by traditional normal mode analysis. The transient behaviors of the response to external excitations and the response to initial conditions are studied by examining the pseudospectral structures and the energy growth function G(t) Before we study the nonmodal stability of the system, we extend the results of long-wave analysis in previous works by examining the linear stabilities for streamwise and spanwise disturbances. Results show that the critical conditions of both the surface mode and the shear mode instabilities are dependent on beta for streamwise disturbances. However, the spanwise disturbances have no unstable eigenvalue. 2010 American Institute of Physics. [doi:10.1063/1.3455503]
Resumo:
A linear spatio-temporal stability analysis is conducted for the ice growth under a falling water film along an inclined ice plane. The full system of linear stability equations is solved by using the Chebyshev collocation method. By plotting the boundary curve between the linear absolute and convective instabilities (AI/CI) of the ice mode in the parameter plane of the Reynolds number and incline angle, it is found that the linear absolute instability exists and occurs above a minimum Reynolds number and below a maximum inclined angle. Furthermore, by plotting the critical Reynolds number curves with respect to the inclined angle for the downstream and upstream branches, the convectively unstable region is determined and divided into three parts, one of which has both downstream and upstream convectively unstable wavepackets and the other two have only downstream or upstream convectively unstable wavepacket. Finally, the effect of the Stefan number and the thickness of the ice layer on the AI/CI boundary curve is investigated.