331 resultados para core–shell heterojunction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

SnS/SnO heterojunction structured nanocrystals with zigzag rod-like connected morphology were prepared by using a simple two-step method. Bulk heterojunction solar cells were fabricated using the SnS/SnO nanocrystals blended with poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene) (MDMO-PPV) as the active layer. Compared with solar cells using SnS nanoparticles hybridized with MDMO-PPV as the active layer, the SnS/SnO devices showed better performance, with a power conversion efficiency higher by about one order in magnitude.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

有机薄膜晶体管由于具有低成本、易于柔性基底兼容、可以大面积制作等优点,已经在有源平板显示、低端电子产品以及传感器等方面显示出了极大的应用潜力。由于有机异质结具有一些与无机异质结不同的特性,而基于有机异质结的电子器件也显示出越来越受到人们的关注。因此,本论文的工作主要集中在有机异质结薄膜晶体管的功能与薄膜形貌的研究上。 1. 我们首先研究了BP2T/F16CuPc异质结的特征(第二章)。在BP2T/F16CuPc异质结界面处,BP2T的能级向上弯曲,F16CuPc的能级向下弯曲,费米能级穿越F16CuPc的LUMO。并且在其异质结界面处,存在载流子的累积,其中空穴累积在BP2T中,累积厚度大约为10 nm,电子累积在F16CuPc中,累积厚度大约为20 nm。 2. 我们利用BP2T/F16CuPc异质结的特征,通过改变BP2T的厚度,在BP2T/F16CuPc有机异质结薄膜晶体管中实现了晶体管的三种工作模式(第三章):n沟道、双极型和p沟道。在n沟道模式下,电子迁移率随着厚度的增加而增大;在双极型模式下,电子和空穴的迁移率先随着BP2T厚度增加而增加,当BP2T的厚度超过5 nm 时,电子和空穴的迁移率分别达到最大值,随着BP2T厚度的继续增加,电子和空穴的迁移率就开始下降;在p沟道模式下,空穴的迁移率不在随着BP2T厚度的变化而变化。通过对BP2T薄膜进行原子力表征,我们发现这些规律是与BP2T薄膜的表面形貌密切相关的,并给出了载流子累积的示意图。 3. 根据BP2T/F16CuPc有机异质结薄膜晶体管在三种工作模式中所具有的规律,将其双极型的工作模式推广到金属酞菁体系、菲体系、硫茚体系以及萘体系与F16CuPc的异质结材料对中,并分别从第一半导体的生长方式、 分子长度以及迁移率等方面对实现高性能的双极型传输进行了讨论(第四章);在BP2T/F16CuPc有机异质结薄膜晶体管中将单极型电子的迁移率提高到了0.06 cm2/V•s,将双极型电子的迁移率提高到了0.1 cm2/V•s,并且观察到了F16CuPc在BP2T上具有弱外延生长;在NaT4/F16CuPc有机异质结薄膜晶体管中通过设计新的器件构型,实现了高迁移率、高开关比的p型常开型工作模式。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical study is presented of the lateral confinement potential (CP) in the very narrow mesa channels fabricated in the conventional two-dimensional (2D) electron gas in GaAs-AlxGa1-xAs heterostructures. The ID electronic structures are calculated in the framework of the confinement potential: V(x) = m* omega0(2)x2/2 for Absolute value of x

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoluminescence (PL) and temperature-dependent Hall effect measurements were carried out in (0001) and (11 (2) over bar0) AlGaN/GaN heterostructures grown on sapphire substrates by metalorganic chemical vapor deposition. There are strong spontaneous and piezoelectric electric fields (SPF) along the growth orientation of the (0001) AlGaN/GaN heterostructures. At the same time there are no corresponding SPF along that of the (1120) AlGaN/GaN. A strong PL peak related to the recombination between two-dimensional electron gas (2DEG) and photoexcited holes was observed at 3.258 eV at room temperature in (0001) AlGaN/GaN heterointerfaces while no corresponding PL peak was observed in (11 (2) over bar0). The existence of a 2DEG was observed in (0001) AlGaN/GaN multi-layers with a mobility saturated at 6000 cm(2)/V s below 80 K, whereas a much lower mobility was measured in (11 (2) over bar0). These results indicated that the SPF was the main element to cause the high mobility and high sheet-electron-density 2DEG in AlGaN/GaN heterostructures. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planar punch through heterojunction phototransistors with a novel emitter control electrode and ion- implanted isolation (CE-PTHPT) are investigated. The phototransistors have a working voltage of 3-10V and high sensitivity at low input power. The base of the transistor is completely depleted under operating condition. Base current is zero. The CE-PTHPT has an increased speed and a decreased noise. The novel CE-PTHPT has been fabricated in this paper. The optical gain of GaAlAs/GaAs CE-PTHPT for the incident light power 1.3 and 43nw with the wavelength of 0.8 mu m reached 1260 and 8108. The input noise current calculated is 5.46 x 10(-16) A/H-z(1/2). For polysilicon emitter CE-PTHPT, the optical gain is 3083 at the input power of 0.174 mu w. The optical gain of InGaAs/InP CE-PTHPT reaches 350 for an incident power of 0.3 mu w at the wavelength of 1.55 mu m. The CE-PTHPT detectors is promising as photo detectors for optical fiber communication system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orange AlGaInP high brightness light emitting diodes (LEDs) were fabricated by low pressure metalorganic chemical vapor deposition(LP-MOCVD) technology. AlGaInP double heterojunction structure was used as active layer. 15 pairs of Al0.5Ga0.5As/AlAs distributed Bragg reflector and 7 mu m Al0.8Ga0.2As current spreading layer were employed to reduce the absorption of GaAs substrate and upper anode respectively. At 20mA the LEDs emitting wavelength was between 600-610nm with 18.3nm FWHM, 0.45mW radiation power and 1.7% external quantum efficiency. Brightness of the LED chips and LED lamps with 15 degrees viewing angle(2 theta(1/2)) reached 30mcd and 1000mcd respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We employed organic heterojunction films as all-organic connecting units to fabricate tandem organic photovoltaic cells by continuous deposition. The all-organic connecting units with a better transparence and a lower sublimation temperature became an effective recombination center for electrons and holes photogenerated in front cell and back cell, respectively. Tunnel mechanism was proposed to explain the combination of photogenerated carrier.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the charge transport in organic heterojunction films consisting of copper phthalocyanine (CuPc) and copper hexadecafluorophthalocyanine (F16CuPc). The heterojunction effect between CuPc and F16CuPc induced high-density carriers at both sides of heterojunction. The Hall effect was observed at room temperature, which demonstrated the existence of free carriers and their delocalized transport under heterojunction effect. The Hall mobility of 1.2 cm(2)/V s for holes and 2.4 cm(2)/V s for electrons indicated that the transport capability of the heterojunction films is comparable to single crystals. The transport process was further explained by the multiple trap-and-release model according to the temperature dependence of conduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tandem polymer photovoltaic cells with the subcells having different absorption characteristics in series connection are widely investigated to enhance absorption coverage over the solar spectrum. Herein. we demonstrate efficient tandem polymer photovoltaic cells with the two stacked subcells comprising different band-gap conjugated polymer and fullerene derivative bulk heterojunction in parallel connection. A semitransparent metal layer combined with inorganic semiconductor compounds is utilized as the intermediate electrode of the two stacked subcells to create the required built-in potential for collecting photo-generated charges. The short-circuit current of the stacked cell is the sum of the subcells and the open-circuit voltage is similar to the subcells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer solar cells have the potential to become a major electrical power generating tool in the 21st century. R&D endeavors are focusing on continuous roll-to-roll printing of polymeric or organic compounds from solution-like newspapers-to produce flexible and lightweight devices at low cost. It is recognized, though, that besides the functional properties of the compounds the organization of structures on the nanometer level-forced and controlled mainly by the processing conditions applied-determines the performance of state-of-the-art polymer solar cells. In such devices the photoactive layer is composed of at least two functional materials that form nanoscale interpenetrating phases with specific functionalities, a so-called bulk heterojunction. In this perspective article, our current knowledge on the main factors determining the morphology formation and evolution is introduced, and gaps of our understanding on nanoscale structure-property relations in the field of high-performance polymer solar cells are addressed. Finally, promising routes toward formation of tailored morphologies are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review outlines current progresses in polymer solar cell. Compared to traditional silicon-based photovoltaic (PV) technology, the completely different principle of optoelectric response in the polymer cell results in a novel configuration of the device and more complicated photovoltaic generation process. The conception of bulk-heterojunction (BHJ) is introduced and its advantage in terms of morphology is addressed. The main aspects including the morphology of photoactive layer, which limit the efficiency and stability of polymer solar cell, are discussed in detail. The solutions to boosting up both the efficiency and stability (lifetime) of the polymer solar cell are highlighted at the end of this review.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We fabricated organic photovoltaic cells by using hexadecafluorophthalocyaninatocopper (F16CuPc) as electron acceptor material and para-sexiphenyl (p-6P) as electron donor material. F16CuPc has wide absorption spectrum from 550 nm to 850 nm, which covers the maximum of solar photo flux. The measurement of their external quantum efficiency (EQE) demonstrated that the photocurrent comes from the excitons created in F16CuPc, which were separated into free electrons and holes at heterojunction interface of p-6P and F16CuPc. Moreover, F(16)FuPc with excellent air-stability improved the environmental stability of photovoltaic cells, and the unencapsulated cells exhibited the shelf lifetime of exceeding a week.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interfaces formed between copper-hexadecafluoro-phthalocyanine (F16CuPc) and 2,5-bis(4-biphenylyl) bithiophene (BP2T) were examined using photoemission and inverse photoemission spectroscopy. It is observed that in F16CuPc/BP2T the heterojunction is characterized by band bending in both materials, while in BP2T/F16CuPc the band bending is confined in BP2T only. The combination of the band bending and finite Debye lengths provides an explanation to the observed ambipolar behavior of the organic thin film transistors based on such heterojunctions.