948 resultados para Semantic metrics
Resumo:
Recent advances in understanding have made it possible to relate global precipitation changes directly to emissions of particular gases and aerosols that influence climate. Using these advances, new indices are developed here called the Global Precipitation-change Potential for pulse (GPP_P) and sustained (GPP_S) emissions, which measure the precipitation change per unit mass of emissions. The GPP can be used as a metric to compare the effects of different emissions. This is akin to the global warming potential (GWP) and the global temperature-change potential (GTP) which are used to place emissions on a common scale. Hence the GPP provides an additional perspective of the relative or absolute effects of emissions. It is however recognised that precipitation changes are predicted to be highly variable in size and sign between different regions and this limits the usefulness of a purely global metric. The GPP_P and GPP_S formulation consists of two terms, one dependent on the surface temperature change and the other dependent on the atmospheric component of the radiative forcing. For some forcing agents, and notably for CO2, these two terms oppose each other – as the forcing and temperature perturbations have different timescales, even the sign of the absolute GPP_P and GPP_S varies with time, and the opposing terms can make values sensitive to uncertainties in input parameters. This makes the choice of CO2 as a reference gas problematic, especially for the GPP_S at time horizons less than about 60 years. In addition, few studies have presented results for the surface/atmosphere partitioning of different forcings, leading to more uncertainty in quantifying the GPP than the GWP or GTP. Values of the GPP_P and GPP_S for five long- and short-lived forcing agents (CO2, CH4, N2O, sulphate and black carbon – BC) are presented, using illustrative values of required parameters. The resulting precipitation changes are given as the change at a specific time horizon (and hence they are end-point metrics) but it is noted that the GPPS can also be interpreted as the time-integrated effect of a pulse emission. Using CO2 as a references gas, the GPP_P and GPP_S for the non-CO2 species are larger than the corresponding GTP values. For BC emissions, the atmospheric forcing is sufficiently strong that the GPP_S is opposite in sign to the GTP_S. The sensitivity of these values to a number of input parameters is explored. The GPP can also be used to evaluate the contribution of different emissions to precipitation change during or after a period of emissions. As an illustration, the precipitation changes resulting from emissions in 2008 (using the GPP_P) and emissions sustained at 2008 levels (using the GPP_S) are presented. These indicate that for periods of 20 years (after the 2008 emissions) and 50 years (for sustained emissions at 2008 levels) methane is the dominant driver of positive precipitation changes due to those emissions. For sustained emissions, the sum of the effect of the five species included here does not become positive until after 50 years, by which time the global surface temperature increase exceeds 1 K.
Resumo:
Comprehension deficits are common in stroke aphasia, including in cases with (i) semantic aphasia (SA), characterised by poor executive control of semantic processing across verbal and nonverbal modalities, and (ii) Wernicke’s aphasia (WA), associated with poor auditory-verbal comprehension and repetition, plus fluent speech with jargon. However, the varieties of these comprehension problems, and their underlying causes, are not well-understood. Both patient groups exhibit some type of semantic ‘access’ deficit, as opposed to the ‘storage’ deficits observed in semantic dementia. Nevertheless, existing descriptions suggest these patients might have different varieties of ‘access’ impairment – related to difficulty resolving competition (in SA) vs. initial activation of concepts from sensory inputs (in WA). We used a case-series design to compare WA and SA patients on Warrington’s paradigmatic assessment of semantic ‘access’ deficits. In these verbal and non-verbal matching tasks, a small set of semantically-related items are repeatedly presented over several cycles so that the target on one trial becomes a distractor on another (building up interference and eliciting semantic ‘blocking’ effects). WA and SA patients were distinguished according to lesion location in the temporal cortex, but in each group, some individuals had additional prefrontal damage. Both of these aspects of lesion variability – one that mapped onto classical ‘syndromes’ and one that did not – predicted aspects of the semantic ‘access’ deficit. Both SA and WA cases showed multimodal semantic impairment, although as expected the WA group showed greater deficits on auditory-verbal than picture judgements. Distribution of damage in the temporal lobe was crucial for predicting the initially beneficial effects of stimulus repetition: WA cases showed initial improvement with repetition of words and pictures, while in SA, semantic access was initially good but declined in the face of competition from previous targets. Prefrontal damage predicted the harmful effects of repetition: the ability to re-select both word and picture targets in the face of mounting competition was linked to left prefrontal damage in both groups. Therefore, SA and WA patients have partially distinct impairment of semantic ‘access’ but, across these syndromes, prefrontal lesions produce declining comprehension with repetition in both verbal and non-verbal tasks.
Resumo:
In this paper we present a novel approach to detect people meeting. The proposed approach works by translating people behaviour from trajectory information into semantic terms. Having available a semantic model of the meeting behaviour, the event detection is performed in the semantic domain. The model is learnt employing a soft-computing clustering algorithm that combines trajectory information and motion semantic terms. A stable representation can be obtained from a series of examples. Results obtained on a series of videos with different types of meeting situations show that the proposed approach can learn a generic model that can effectively be applied on the behaviour recognition of meeting situations.
Resumo:
In this paper we propose an innovative approach for behaviour recognition, from a multicamera environment, based on translating video activity into semantics. First, we fuse tracks from individual cameras through clustering employing soft computing techniques. Then, we introduce a higher-level module able to translate fused tracks into semantic information. With our proposed approach, we address the challenge set in PETS 2014 on recognising behaviours of interest around a parked vehicle, namely the abnormal behaviour of someone walking around the vehicle.
Resumo:
Complete information dispositional metasemantics says that our expressions get their meaning in virtue of what our dispositions to apply those terms would be given complete information. The view has recently been advanced and argued to have a number of attractive features. I argue that that it threatens to make the meanings of our words indeterminate and doesn't do what it was that made a dispositional view attractive in the first place.
Resumo:
We present an account of semantic representation that focuses on distinct types of information from which word meanings can be learned. In particular, we argue that there are at least two major types of information from which we learn word meanings. The first is what we call experiential information. This is data derived both from our sensory-motor interactions with the outside world, as well as from our experience of own inner states, particularly our emotions. The second type of information is language-based. In particular, it is derived from the general linguistic context in which words appear. The paper spells out this proposal, summarizes research supporting this view and presents new predictions emerging from this framework.
Resumo:
This study uses the Deese-Roediger-McDermott paradigm to investigate how deaf children with cochlear implants organize their semantic networks as compared to their hearing age-mates.
Resumo:
This paper is about the use of natural language to communicate with computers. Most researches that have pursued this goal consider only requests expressed in English. A way to facilitate the use of several languages in natural language systems is by using an interlingua. An interlingua is an intermediary representation for natural language information that can be processed by machines. We propose to convert natural language requests into an interlingua [universal networking language (UNL)] and to execute these requests using software components. In order to achieve this goal, we propose OntoMap, an ontology-based architecture to perform the semantic mapping between UNL sentences and software components. OntoMap also performs component search and retrieval based on semantic information formalized in ontologies and rules.
Resumo:
Robotic mapping is the process of automatically constructing an environment representation using mobile robots. We address the problem of semantic mapping, which consists of using mobile robots to create maps that represent not only metric occupancy but also other properties of the environment. Specifically, we develop techniques to build maps that represent activity and navigability of the environment. Our approach to semantic mapping is to combine machine learning techniques with standard mapping algorithms. Supervised learning methods are used to automatically associate properties of space to the desired classification patterns. We present two methods, the first based on hidden Markov models and the second on support vector machines. Both approaches have been tested and experimentally validated in two problem domains: terrain mapping and activity-based mapping.
Resumo:
OWL-S is an application of OWL, the Web Ontology Language, that describes the semantics of Web Services so that their discovery, selection, invocation and composition can be automated. The research literature reports the use of UML diagrams for the automatic generation of Semantic Web Service descriptions in OWL-S. This paper demonstrates a higher level of automation by generating complete complete Web applications from OWL-S descriptions that have themselves been generated from UML. Previously, we proposed an approach for processing OWL-S descriptions in order to produce MVC-based skeletons for Web applications. The OWL-S ontology undergoes a series of transformations in order to generate a Model-View-Controller application implemented by a combination of Java Beans, JSP, and Servlets code, respectively. In this paper, we show in detail the documents produced at each processing step. We highlight the connections between OWL-S specifications and executable code in the various Java dialects and show the Web interfaces that result from this process.
Resumo:
Establishing metrics to assess machine translation (MT) systems automatically is now crucial owing to the widespread use of MT over the web. In this study we show that such evaluation can be done by modeling text as complex networks. Specifically, we extend our previous work by employing additional metrics of complex networks, whose results were used as input for machine learning methods and allowed MT texts of distinct qualities to be distinguished. Also shown is that the node-to-node mapping between source and target texts (English-Portuguese and Spanish-Portuguese pairs) can be improved by adding further hierarchical levels for the metrics out-degree, in-degree, hierarchical common degree, cluster coefficient, inter-ring degree, intra-ring degree and convergence ratio. The results presented here amount to a proof-of-principle that the possible capturing of a wider context with the hierarchical levels may be combined with machine learning methods to yield an approach for assessing the quality of MT systems. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This presentation was offered as part of the CUNY Library Assessment Conference, Reinventing Libraries: Reinventing Assessment, held at the City University of New York in June 2014.
Resumo:
Messaging middleware provides asynchronous communication between services in distributed environments. However, security, reliability and performance issues compel such middleware to be distributed, and distribution throws up its own problems such as identifying messaging channels which could then be subscribed to. In particular, interested parties need to identify channels defined in remote locations while not knowing details of how they are defined. A common vocabulary using semantic descriptions offers a solution to this problem. In this paper, we describe the design and implementation of federated messaging middleware using semantic description of channels.