951 resultados para Pulsed laser deposition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PbZrO3/SrRuO3/SrTiO3 (100) epitaxial heterostructures with different thickness of the PbZrO3 (PZO) layer (d(PZO) similar to 5-160 nm) were fabricated by pulsed laser deposition. The ultrathin PZO films (d(PZO) <= 10 nm) were found to possess a rhombohedral structure. On increasing the PZO film thickness, a bulk like orthorhombic phase started forming in the film with d(PZO) similar to 22 nm and became abundant in the thicker films. Nanobeam electron diffraction and room-temperature micro-Raman measurements revealed that the stabilization of the rhombohedral phase of PZO could be attributed to the epitaxial strain accommodated by the heterostructures. Room-temperature polarization vs electric field measurements performed on different samples showed characteristic double hysteresis loops of antiferroelectric materials accompanied by a small remnant polarization for the thick PZO films (dPZO >= 50 nm). The remnant polarization increased by reducing the PZO layer thickness, and a ferroelectric like hysteresis loop was observed for the sample with d(PZO) similar to 22 nm. Local ferroelectric properties measured by piezoresponse force microscopy also exhibited a similar thickness-dependent antiferroelectric-ferroelectric transition. Room-temperature electrical properties observed in the PZO thin films in correlation to their structural characteristics suggested that a ferroelectric rhombohedral phase could be stabilized in thin epitaxial PZO films experiencing large interfacial compressive stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase instability of bismuth perovskite (BiMO3), where M is a ferromagnetic cation, is exploited to create self-assembled magnetic oxide nanocrystal arrays on oxide supports. Conditions during pulsed laser deposition are tuned so as to induce complete breakdown of the perovskite precursor into bismuth oxide (Bi2 O3 ) and metal oxide (M-Ox ) pockets. Subsequent cooling in vacuum volatizes the Bi2 O3 leaving behind an array of monodisperse nanocrystals. In situ reflective high energy electron diffraction beam is exploited to monitor the synthesis in real-time. Analysis of the patterns confi rms the phase separation and volatization process. Successful synthesis of M-Ox, where M = Mn, Fe, Co, and Cr, is shown using this template-free facile approach. Detailed magnetic characterization of nanocrystals is carried out to reveal the functionalities such as magnetic anisotropy as well as larger than bulk moments, as expected in these oxide nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strain-dependent microstructural modifications were observed in epitaxial BiCrO3 (BCO) thin films fabricated on single crystalline substrates, utilizing pulsed laser deposition. The following conditions were employed to modify the epitaxial-strain: (i) in-plane tensile strain, BCOSTO [BCO grown on buffered SrTiO3 (001)] and in-plane compressive strain, BCONGO [BCO grown on buffered NdGaO3 (110)] and (ii) varying BCO film thickness. A combination of techniques like X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (TEM) was used to analyse the epitaxial growth quality and the microstructure of BCO. Our studies revealed that in the case of BCOSTO, a coherent interface with homogeneous orthorhombic phase is obtained only for BCO film with thicknesses, d < 50 nm. All the BCOSTO films with d = 50 nm were found to be strain-relaxed with an orthorhombic phase showing 1/2 <100> and 1/4 <101> satellite reflections, the latter oriented at 45° from orthorhombic diffraction spots. High angle annular dark field scanning TEM of these films strongly suggested that the satellite reflections, 1/2 <100> and 1/4 <101>, originate from the atomic stacking sequence changes (or “modulated structure”) as reported for polytypes, without altering the chemical composition. The unaltered stoichiometry was confirmed by estimating both valency of Bi and Cr cations by surface and in-depth XPS analysis as well as the stoichiometric ratio (1 Bi:1 Cr) using scanning TEM–energy dispersive X-ray analysis. In contrast, compressively strained BCONGO films exhibited monoclinic symmetry without any structural modulations or interfacial defects, up to d ~ 200 nm. Our results indicate that both the substrate-induced in-plane epitaxial strain and the BCO film thickness are the crucial parameters to stabilise a homogeneous BCO phase in an epitaxially grown film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epitaxial tetragonal 425 and 611 nm thick Pb(ZrTi)O (PZT) films are deposited by pulsed laser deposition on SrRuO-coated (100) SrTiO 24° tilt angle bicrystal substrates to create a single PZT grain boundary with a well-defined orientation. On either side of the bicrystal boundary, the films show square hysteresis loops and have dielectric permittivities of 456 and 576, with loss tangents of 0.010 and 0.015, respectively. Using piezoresponse force microscopy (PFM), a decrease in the nonlinear piezoelectric response is observed in the vicinity (720-820 nm) of the grain boundary. This region represents the width over which the extrinsic contributions to the piezoelectric response (e.g., those associated with the domain density/configuration and/or the domain wall mobility) are influenced by the presence of the grain boundary. Transmission electron microscope (TEM) images collected near and far from the grain boundary indicate a strong preference for (101)/(1-01) type domain walls at the grain boundary, whereas (011)/(01-1) and (101)/(1-01) are observed away from this region. It is proposed that the elastic strain field at the grain boundary interacts with the ferro-electric/elastic domain structure, stabilizing (101)/(1-01) rather than (011)/(01-1) type domain walls, which inhibits domain wall motion under applied field and decreases non-linearity. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epitaxial (001)-oriented 0.7Pb(Mg0.33Nb0.67)O3-0.3PbTiO3 (PMN-PT) thin films were deposited by pulsed laser deposition on vicinal SrTiO3 (001) substrates using La0.7Sr0.3MnO3 as bottom electrode. Detailed microstructural investigations of these films were carried out using X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). Polarization-field hysteresis curves were measured at room temperature. Spontaneous polarization P s , remnant polarization P r and coercive voltage V c were found to be 25 μC/cm2, 15 μC/cm2 and 0.81 V, respectively. Field dependent dielectric constant measurements exhibited butterfly shaped curves, indicating the true ferroelectric nature of these films at room temperature. The dielectric constant and the dielectric loss at 100 kHz were found to be 238 and 0.14, respectively. The local piezoelectric properties of PMN-PT films were investigated by piezoelectric force microscopy and were found to exhibit a local piezoelectric coefficient of 7.8 pm/V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large range well ordered epitaxial ferrimagnetic nominally Fe3O4 structures were fabricated by pulsed-laser deposition and embedded in ferroelectric PbZrxTi1-xO3 (x = 0.2, 0.52) epitaxial films. Magnetite dots were investigated by magnetic force microscopy and exhibited magnetic domain contrast at room temperature (RT). Embedding ferroelectric PbZrxTi1-xO3 layers exhibit remnant polarization values close to the values of single epitaxial layers. Transmission electron microscopy demonstrated the epitaxial growth of the composites and the formation of the ferrimagnetic and ferroelectric phases. Physical and structural properties of these composites recommend them for investigations of stress mediated magneto-electric coupling at room temperature. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692583]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large range ordered La(0.7)Sr(0.3)MnO(3) and SrRuO(3) epitaxial dots were fabricated by pulsed laser deposition using stencil masks and were embedded in ferroelectric PbTiO(3) epitaxial films. PbTiO(3) films grown on top of La(0.7)Sr(0.3)MnO(3) dots form arrays of 180 degrees domains that are switchable and have good ferroelectric properties. PbTiO(3) films made on top of SrRuO(3) dots have a monodomain polarization state. These observations point out the importance of the electronic properties of the bottom electrode in the selection of a preferential polarization state in epitaxial ferroelectric films and propose a route of fabricating large arrays of switchable 180 degrees ferroelectric domains. (C) 2011 American Institute of Physics. [doi:10.1063/1.3630232]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the piezoelectric properties of PbTiO(3) thin films grown by pulsed laser deposition with piezoresponse force microscopy and transmission electron microscopy. The as-grown films exhibit an upward polarization, inhomogeneous distribution of piezoelectric characteristics concerning local coercive fields, and piezoelectric coefficient. In fact, the data obtained reveal imprints during piezoresponse force microscopy measurements, nonlinearity in the piezoelectric deformation, and limited polarization reversal. Moreover, transmission electron microscopy shows the presence of defects near the film/substrate interface, which can be associated with the variations of piezoelectric properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work demonstrates that instead of paraelectric PbTiO(3), completely c-oriented ferroelectric PbTiO(3) thin films were directly grown on (001)-SrTiO(3) substrates by pulsed-laser deposition with thickness up to 340 nm at a temperature well above the Curie temperature of bulk PbTiO(3). The influence of laser-pulse frequency, substrate-surface termination on growth, and functional properties were studied using x-ray diffraction, transmission electron microscopy, and piezoresponse force microscopy. At low growth rates (frequency 8 Hz) a domains were formed for film thickness above 20-100 nm. Due to coherency strains the Curie temperature (T(c)) of the monodomain films was increased approximately by 350 degrees C with respect to the T(c) of bulk PbTiO(3) even for 280-nm-thick films. Nonetheless, up to now this type of growth mode has been considered unlikely to occur since the Matthews-Blakeslee (MB) model already predicts strain relaxation for films having a thickness of only similar to 10 nm. However, the present work disputes the applicability of the MB model. It clarifies the physical reasons for the large increase in T(c) for thick films, and it is shown that the experimental results are in good agreement with the predictions based on the monodomain model of Pertsev et al. [Phys. Rev. Lett. 80, 1988 (1998)].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have excited mid-infrared surface plasmons in two YBCO thin films of contrasting properties using attenuated total reflection of light and found that the imaginary part of the dielectric function decreases linearly with reduction in temperature. This result is in contrast with the commonly reported conclusion of infrared normal reflectance studies. If sustained it may clarify the problem of understanding the normal state properties of YBCO and the other cuprates. The dielectric function of the films, epsilon = epsilon(1) + i epsilon(2), was determined between room temperature and 80K: epsilon(1) was found to be only slightly temperature dependent but somewhat sample dependent, probably as a result of surface and grain boundary contamination. The imaginary part, epsilon(2), (and the real part of the conductivity, sigma(1),) decreased linearly with reduction in temperature in both films. Results obtained were: for film 1: epsilon(1) = - 14.05 - 0.0024T and epsilon(2) - 4.11 + 0.086T and for film 2: epsilon(1) = - 24.09 + 0.0013T and epsilon(2) = 7.66 + 0.067T where T is the temperature in Kelvin. An understanding of the results is offered in terms of temperature-dependent intrinsic intragrain inelastic scattering and temperature-independent contributions: elastic and inelastic grain boundary scattering and optical interband (or localised charge) absorption. The relative contribution of each is estimated. A key conclusion is that the interband (or localised charge) absorption is only similar to 10%. Most importantly, the intrinsic scattering rate, 1/tau, decreases linearly with fall in temperature, T, in a regime where current theory predicts dependence on frequency, omega, to dominate. The coupling constant, lambda, between the charge carriers and the thermal excitations has a value of 1.7, some fivefold greater than the far infrared value. These results imply a need to restate the phenomenology of the normal state of high temperature superconductors and seek a corresponding theoretical understanding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dielectric properties of BaTiO3 thin films and multilayers are different from bulk materials because of nanoscale dimensions, interfaces, and stress-strain conditions. In this study, BaTiO3/SrTiO3 multilayers deposited on SrTiO3 substrates by pulsed laser deposition have been investigated by high-energy-resolution electron energy-loss spectroscopy. The fine structures in the spectra are discussed in terms of crystal-field splitting and the internal strain. The crystal-field splitting of the BaTiO3 thin layer is found to be a little larger than that of bulk BaTiO3, which has been interpreted by the presence of the internal strain induced by the misfit at the interface. This finding is consistent with the lattice parameters of the BaTiO3 thin layer determined by the selected area diffraction pattern. The near-edge structure of the oxygen K edge in BaTiO3 thin layers and in bulk BaTiO3 are simulated by first-principle self-consistent full multiple-scattering calculations. The results of the simulations are in a good agreement with the experimental results. Moreover, the aggregation of oxygen vacancies at the rough BaTiO3/SrTiO3 interface is indicated by the increased [Ti]/[O] element ratio, which dominates the difference of dielectric properties between BaTiO3 layer and bulk materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epitaxial BaTiO3 films and epitaxial BaTiO3/SrTiO3 multilayers were grown by pulsed laser deposition on vicinal surfaces of (001)-oriented Nb-doped SrTiO3 (SrTiO3:Nb) single-crystal substrates. Atomic force microscopy was used to investigate the surface topography of the deposited films. The morphology of the films, of the BaTiO3/SrTiO3 interfaces, and of the column boundaries was investigated by cross-sectional high-resolution transmission electron microscopy. Measurements of the dielectric properties were performed by comparing BaTiO3 films and BaTiO3/SrTiO3 multilayers of different numbers of individual layers, but equal overall thickness. The dielectric loss saturates for a thickness above 300 nm and linearly decreases with decreasing film thickness below a thickness of 75 nm. At the same thickness of 75 nm, the thickness dependence of the dielectric constant also exhibits a change in the linear slope both for BaTiO3 films and BaTiO3/SrTiO3 multilayers. This behaviour is explained by the change observed in the grain morphology at a thickness of 75 nm. For the thickness dependence of the dielectric constant, two phenomenological models are considered, viz. a 'series-capacitor' model and a 'dead-layer' model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initial growth mechanism of epitaxial BaTiO3 films is studied by combined application of atomic force microscopy, cross sectional high-resolution transmission electron microscopy, and x-ray diffraction. Epitaxial BaTiO3 thin films were grown by pulsed laser deposition on vicinal Nb-doped SrTiO3 (SrTiO3:Nb) (001) substrates with well-defined terraces. X-ray diffraction and cross sectional high-resolution transmission electron microscopy investigations revealed well-defined epitaxial films and a sharp interface between BaTiO3 films and SrTiO3:Nb substrates. The layer-then-island (Stranski-Krastanov mode) growth mechanism observed by analyzing the morphology of a sequence of films with increasing amount of deposited material has been confirmed by microstructure investigations. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epitaxial SrBi2Ta2O9 (SBT) thin films with well-defined (116) orientation have been grown by pulsed laser deposition on Si(100) substrates covered with an yttria-stabilized ZrO2 (YSZ) buffer layer and an epitaxial layer of electrically conductive SrRuO3. Studies on the in-plane crystallographic relations between SrRuO3 and YSZ revealed a rectangle-on-cube epitaxy with respect to the substrate. X-ray diffraction pole figure measurements revealed well defined orientation relations, viz. SBT(116)\\ SrRuO3(110)\\ YSZ(100)\\ Si(100), SBT[110]\\ SrRuO3[001], and SrRuO3[111]\\ YSZ[110]\\ Si[110].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epitaxial BaTiO3 films and BaTiO3/SrTiO3 multilayers were grown by pulsed laser deposition (PLD) on (001)-oriented Nb-doped SrTiO3 (SrTiO3:Nb) substrates. Measurements of the dielectric properties were performed comparing BaTiO3 films and BaTiO3/SrTiO3 multilayers of different number of individual layers, but equal overall thickness. The dielectric loss saturates for a thickness above 300 nm, and linearly decreases with decreasing film thickness below a thickness of 75 nm, and it is independent on the number of multilayers, pointing to some interface effect. The thickness dependence of the dielectric constant of BaTiO3 films and BaTiO3/SrTiO3 multilayers; exhibits a change in the linear slope at a thickness of 75 nm. This behavior is explained by the change observed in the morphology at a thickness of 75 nm. In order to explain the thickness dependence of the dielectric constant, two approaches are considered in this paper, viz. a "series capacitor" model and a "dead layer" model.