957 resultados para Propositional calculus.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 30C45, Secondary 26A33, 30C80

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematics Subject Classification: 44A15, 33D15, 81Q99

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematics Subject Class.: 33C10,33D60,26D15,33D05,33D15,33D90

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 93C83, 93C85, 68T40

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33, 33C60, 44A20

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 44A20, 33C60, 44A10, 26A33, 33C20, 85A99

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 26A33 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 15A15, 15A52, 33C60, 33E12, 44A20, 62E15 Dedicated to Professor R. Gorenflo on the occasion of his 80th birthday

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Виржиния С. Кирякова - В този обзор илюстрираме накратко наши приноси към обобщенията на дробното смятане (анализ) като теория на операторите за интегриране и диференциране от произволен (дробен) ред, на класическите специални функции и на интегралните трансформации от лапласов тип. Показано е, че тези три области на анализа са тясно свързани и взаимно индуцират своето възникване и по-нататъшно развитие. За конкретните твърдения, доказателства и примери, вж. Литературата.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MSC 2010: 49K05, 26A33

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As one of the newest members in Articial Immune Systems (AIS), the Dendritic Cell Algorithm (DCA) has been applied to a range of problems. These applications mainly belong to the eld of anomaly detection. However, real-time detection, a new challenge to anomaly detection, requires improvement on the real-time capability of the DCA. To assess such capability, formal methods in the research of real-time systems can be employed. The ndings of the assessment can provide guideline for the future development of the algorithm. Therefore, in this paper we use an interval logic based method, named the Duration Calcu- lus (DC), to specify a simplied single-cell model of the DCA. Based on the DC specications with further induction, we nd that each individual cell in the DCA can perform its function as a detector in real-time. Since the DCA can be seen as many such cells operating in parallel, it is potentially capable of performing real-time detection. However, the analysis process of the standard DCA constricts its real-time capability. As a result, we conclude that the analysis process of the standard DCA should be replaced by a real-time analysis component, which can perform periodic analysis for the purpose of real-time detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a space fractional di®usion equation (SFDE) with non- homogeneous boundary conditions on a bounded domain is considered. A new matrix transfer technique (MTT) for solving the SFDE is proposed. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix raised to the same fractional power. Analytic solutions of the SFDE are derived. Finally, some numerical results are given to demonstrate that the MTT is a computationally e±cient and accurate method for solving SFDE.