963 resultados para Peixe dulçaquícola
Resumo:
Dissertação de mest., Arqueologia (Teoria e Métodos), Faculdade de Ciências Humanas e Sociais, Univ. do Algarve, 2012
Resumo:
Diapositivos de apoio às aulas teóricas de Tecnologia Alimentar - ESSUAlg: Dietética e Nutrição
Resumo:
Relatório de Estágio de Licenciatura em Bioquímica, Universidade do Algarve, Faculdade de Ciências e Tecnologia, 2001
Resumo:
A aquacultura é uma área em expansão devido ao aumento do consumo de peixe nos últimos anos sendo que para os estágios iniciais do desenvolvimento larvar é utilizado alimento vivo, como Artémia. Nos últimos anos tem-se tentado obter dietas inertes devido às limitações inerentes à utilização de alimento vivo. Estas dietas apresentam na sua constituição uma componente muito hidrossolúvel que facilmente se perde por lixiviação, constituída por compostos de baixa massa molecular, mas que são determinantes para o crescimento das larvas. O objetivo deste trabalho foi utilizar inicialmente os lipossomas e posteriormente as micropartículas de quitosano (CS) como veículos para tentar formular microdietas para a alimentação de larvas de peixe. Para tal, foram encapsulados o hidrolisado de proteína de peixe (CPSP 90®) e um mistura de vitaminas, oligo-elementos e minerais (Pré-Mix PVO-40®). Os resultados obtidos indicam que os lipossomas apresentam tamanhos entre os 150-600 nm, dependendo do número de ciclos de congelação/aquecimento. Embora se tenham obtido eficiências de encapsulação de CPSP na ordem dos 90-95%, concluiu-se que esta tecnologia não é rentável para a produção de microdietas para larvas de peixe devido à reduzida capacidade de produção diária. Desta forma, desenvolveu-se um segundo sistema, as micropartículas de CS, que evidenciaram tamanhos de 2.7 - 8.7 μm, dependendo da percentagem de CS e CPSP:PM e uma eficiência de encapsulação de 95%. A formulação CS:CPSP:PM 2:6:0.5 apresentou a libertação mais baixa (40% em 30-60 min), permitindo que os restantes 60% estejam disponíveis para ingestão. Foi observado também que o perfil de libertação depende da quantidade de polímero presente nas micropartículas. A caracterização dos dois tipos de sistema estudados indica que não podem ser utilizadas como formulação final para a alimentação de larvas de peixe devido ao seu tamanho, mas que têm o perfil ideal para fazer parte de uma sistema complexo, em que exista uma segunda micropartícula externa.
Resumo:
Este trabalho descreve a biologia reprodutiva e dieta da chilreta Sternula albifrons no Sul de Portugal, entre 2008 e 2010. Foram analisadas as variáveis reprodutivas: tamanho médio das posturas, sucesso de eclosão e volume dos ovos entre os vários anos e habitats natural (Praias) e alternativo (Salinas). A dieta foi caracterizada a partir da identificação dos otólitos sagitais encontrados nos regurgitos recolhidos perto dos ninhos nas colónias das salinas. Foram identificados um máximo de 11 espécies ou géneros de peixe na dieta da chilreta. O peixe-rei (Atherina spp.) e os góbios (Pomatoschistus spp.) foram as espécies com maior frequência de ocorrência nos regurgitos (sempre superior a 75% e 25% respectivamente). Foram encontradas diferenças significativas somente na proporção da presa “itens não identificados” o que se deve às limitações do próprio método. Os resultados obtidos para as várias variáveis reprodutivas foram comparados com outros estudos anteriores das mesmas colónias por forma a avaliar a adequabilidade das salinas como habitats alternativos de nidificação. Não foram encontradas diferenças significativas nas variáveis reprodutivas entre os habitats natural e alternativo o que suporta a ideia de que as salinas são um habitat alternativo adequado para a nidificação da chilreta no Sul de Portugal. São discutidas algumas acções de conservação para as colónias em questão.
Resumo:
The aquaculture industry aims at replacing significant amounts of marine fish oil by vegetable oils in fish diet. Dietary lipids have been shown to alter the fatty acid composition of bone compartments, which would impact the local production of factors controlling bone formation. Knowledge on the mechanisms underlying the nutritional regulation of bone metabolism is however scarce in fish. Two in vitro bone-derived cell systems developed from seabream (an important species for aquaculture in the Mediterranean region) vertebra, capable of in vitro mineralization and exhibiting prechondrocyte (VSa13) and pre-osteoblast (VSa16) phenotype, were used to assess the effect of certain polyunsaturated fatty acids (PUFAs; arachidonic (AA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids) on cell proliferation, extracellular matrix (ECM) mineralization and gene expression. While all PUFAs promoted morphological changes in both cell lines, VSa16 cell proliferation appeared to be stimulated by PUFAs in a dose dependent manner until 100M, whereas proliferation of VSa13 cells was impaired at concentrations above 10M. AA, EPA and DHA inhibited VSa13 ECM mineralization, alone and in combination, while VSa16 ECM mineralization was only inhibited by AA and EPA. DHA had the opposite effect, increasing mineralization almost by 2 fold. When EFAs were combined, DHA apparently compensated for the inhibitory effect of AA and EPA. Expression of marker genes for bone and lipid metabolisms has been investigated by qPCR and shown to be regulated in pre-osteoblasts exposed to individual PUFAs. Our results show that PUFAs are effectors of fish bone cell lines, altering cell morphology, proliferation and mineralization when added to culture medium. This work also demonstrates the suitability of our in vitro cell systems to get insights into mineralization-related effects of PUFAs in vivo and to evaluate the replacement of fish oils by vegetable oil sources in fish feeds.
Resumo:
In the European Union the turn towards renewable energy sources has increased the production of biodiesel from rapeseed oil, leaving glycerol (also known as glycerin) as a valuable by-product. For every litre of biodiesel produced, approximately 79 g of crude glycerol are generated. As the biodiesel production grows, the quantity of crude glycerol generated will be considerable and its utilization will become an urgent topic. One possibility is the use of crude glycerol on animal feeds. Glycerol has been evaluated as a dietary energy source for several farm animals, including fish. A study was undertaken to assess the effect of dietary biodiesel-derived glycerol (from rapeseed oil) on the overall growth performance, digestive capacity and metabolic nutrient utilization in juvenile gilthead seabream fed a low fishmeal level diet. Two practical diets were formulated to be isonitrogenous (crude protein, 45.4% DM), isolipidic (18.5% DM) and isoenergetic (gross energy, 21.3 kJ/g DM). The control diet (CTRL) was formulated with intermediate levels of marine-derived proteins (19%). In the same basal formulation, 5% glycerol (GLY) was incorporated at the expenses of wheat. Each dietary treatment was tested in triplicate tanks over 63 days, with 20 gilthead seabream (Sparus aurata), with a mean initial body weight (IBW) of 27.9 0.12 g. At the end of the trial, fish fed the CTRL diet reached a final body weight of 84.3 2.2 g (more than 3-fold increase of initial body weight). Fish fed the GLY diet showed a significantly higher (P<0.05) growth, expressed in terms of final body weight and specific growth rate. Voluntary feed intake was similar between the two treatments, but both feed efficiency and protein efficiency ratio were significantly improved (P<0.05) in fish fed the GLY diet. Dietary glycerol had no effect (P>0.05) on the apparent digestibility of protein. In comparison to the control treatment, dietary glycerol significantly improved (P<0.05) protein and fat retention. Activities of digestive enzymes were significantly affected by the various dietary treatments. Fish fed the GLY diet showed an enhanced activity of alkaline phosphatase (ALP) and pepsin, while activities of lipase and leucine-alanine peptidase (LAP) were little affected by dietary glycerol. Fish show the ability to use crude glycerol as a dietary energy substrate.
Resumo:
In aquaculture, application of fish hybrids has increased. This technique permits improvement of the fish production by providing specimens showing better growth rate when compared to the parental species. Indeed, sterile individuals are highly demanded because quite frequently parental fish mature before they reach the market size, which impairs their growth and decrease their economic value. Throughout the last years, the commercial and scientific interest in salmonids has increased rapidly, among them, the brook trout (Salvelinus fontinalis), Arctic charr (Salvelinus alpinus) are species that can be crossed to produce hybrids that might by cultured in the fish farms. In the present thesis, we have assessed chromosome numbers and evaluate gonadal sex in the brook trout X Arctic charr hybrid progenies. In our populations, the karyotype of the brook trout comprises 84 chromosomes: 16 bi-armed chromosomes (meta-submetacentric) and 68 one-armed chromosomes (telo-acrocentrics) and the chromosome arm number, NF= 100. Arctic charr karyotype shows variation related to the chromosome number (2n= 81-82) and stable chromosome arm number (NF= 100). 2n= 81 chromosomes consisted of 19 bi-armed and 62 one-armed chromosomes, while 2n= 82 karyotype was organized into 18 meta-submetacentric and 64 acrocentrics. The cytogenetic and histological analysis of the brook trout X Arctic charr hybrids (sparctics) was carried out to asses chromosome and chromosome arm number and gonadal sex of the studied specimens. Diploid chromosome number in the hybrids varied from 81 to 84 and individuals with 83 and 84 chromosomes were predominant. Most of the fish had chromosome arm number equal to 100. Robertsonian fusion in the Arctic charr and chromosome behaviour in the hybrid fish cells might lead to the observed variation in chromosome numbers in the hybrids. Among studied fish, 12 were males, 3 were females and 9 had intersex gonads. No correlation between chromosome number and disturbances in the gonadal development was found. This might suggest that intersex gonads might have been developed as a consequence of disturbances in the genetic sex determination process. Genetic sex determination acts properly in the parental species but in the hybrids this may not be as efficient.
Resumo:
The vertebral column and its units, the vertebrae, are fundamental features, characteristic of all vertebrates. Developmental segregation of the vertebral bodies as articulated units is an intrinsic requirement to guarantee the proper function of the spine. Whenever these units become fused either during development or postsegmentation, movement is affected in a more or less severe manner, depending on the number of vertebrae affected. Nevertheless, fusion may occur as part of regular development and as a physiological requirement, like in the tetrapod sacrum or in fish posterior vertebrae forming the urostyle. In order to meet the main objective of this PhD project, which aimed to better understand the molecular and cellular events underlying vertebral fusion under physiological and pathological conditions, a detailed characterization of the vertebral fusion occurring in zebrafish caudal fin region was conducted. This showed that fusion in the caudal fin region comprised 5 vertebral bodies, from which, only fusion between [PU1++U1] and ural2 [U2+] was still traceable during development. This involved bone deposition around the notochord sheath while fusion within the remaining vertebral bodies occur at the level of the notochord sheath, as during the early establishment of the vertebral bodies. A comparison approach between the caudal fin vertebrae and the remaining vertebral column showed conserved features such as the presence of mineralization related proteins as Osteocalcin were identified throughout the vertebral column, independently on the mineralization patterns. This unexpected presence of Osteocalcin in notochord sheath, here identified as Oc1, suggested that this gene, opposing to Oc2, generally associated with bone formation and mature osteoblast activity, is potentially associated with early mineralization events including chordacentrum formation. Nevertheless, major differences between caudal fin region and anterior vertebral bodies considering arch histology and mineralization patterns, led us to use RA as an inductive factor for vertebral fusion, allowing a direct comparison of equivalent structures under normal and fusion events. This fusion phenotype was associated with notochord sheath ectopic mineralization instead of ectopic perichordal bone formation related with increased osteoblast activity, as suggested in previous reports. Additionally, alterations in ECM content, cell adhesion and blood coagulation were discussed as potentially related with the fusion phenotype. Finally, Matrix gla protein, upregulated upon RA treatment and shown to be associated with chordacentrum mineralization sites in regular development, was further described considering its potential function in vertebral formation and pathological fusion. Therefore with this work we propose zebrafish caudal fin vertebral fusion as a potential model to study both congenital and postsegmentation fusion and we present candidate factors and genes that may be further explored in order to clarify whether we can prevent vertebral fusion.
Resumo:
Gilthead seabream is the most important farmed species in the Mediterranean, and knowledge on how common farming practices impact its quality is limited. As such, this Thesis aimed to evaluate how gilthead seabream flesh quality is affected by some of these practices. In Chapter 2, the influence of nutritional factors was evaluated, specifically the high replacement of traditional marine-derived ingredients, both fishmeal and fish oil, with vegetable sources. We have seen that the vegetable-based diets tested did not greatly impact seabream flesh quality, although some alterations were seen in the fatty acid profile of the muscle. However, and despite having caused no alterations in flesh texture, vegetable ingredients reduced the amount of sulphated glycosaminoglycans in the extracellular matrix, affected muscle pH and reduced the activity of proteolytic enzymes. Throughout this Thesis, we measured for the first time the activity of proteolytic enzymes in seabream muscle, and cathepsin B was found to play a pivotal role in post-mortem muscle degradation. In Chapter 3, we evaluated the effect of harvesting and slaughter stress on seabream quality, and contrary to what is seen in most farmed species, our results show that gilthead seabream muscle structure is highly resistant to changes caused by stressful events. Nonetheless, considering that welfare is an increasingly important quality criterion, the use of a zero-withdrawal anaesthetic as a rested harvest technique or even slaughter method could prove valuable to the industry. In Chapter 4, we used maslinic acid as a dietary supplement, to modulate the muscle’s energetic status pre-mortem. As a finishing strategy, maslinic acid failed to increase levels of glycogen and ATP in the muscle. However, supplementation resulted in higher muscle fibre diameter and lower cathepsin B activity, and maslinic acid is likely to be useful to promote growth in this species. In general our Thesis has generated new knowledge to a major challenge facing the aquaculture industry, which is to find a compromise between the trends towards intensive rearing and consumer demand for healthy, high quality seafood being ethically acceptable and having a low impact on the environment.
Resumo:
The European sea bass, Dicentrarchus labrax, is one of the most important marine species cultivated in Southern Europe and has not benefited from selective breeding. One of the major goals in the sea bass (D. labrax) aquaculture industry is to understand and control the complexity of growth associated traits. The aim of the methodology developed for the studies reported in the thesis was not only to establish genetic and genomic resources for sea bass, but to also develop a conceptual strategy to efficiently create knowledge in a research environment that can easily be transferred to the aquaculture industry. The strategy involved; i) establishing an annotated sea bass transcriptome and then using it to, ii) identify new genetic markers for target QTL regions so that, iii) new QTL analysis could be performed and marker based resolution of the DNA regions of interest increased, and then iv) to merge the linkage map and the physical map in order to map the QTL confidence intervals to the sea bass genome and identify genes underlying the targeted traits. Finally to test if genes in the QTL regions that are candidates for divergent growth phenotypes have modified patterns of transcription that reflects the modified whole organism physiology SuperSAGE-SOLiD4 gene expression was used with sea bass with high growth heterogeneity. The SuperSAGE contributed to significantly increase the transcriptome information for sea bass muscle, brain and liver and also led to the identification of putative candidate genes lying in the genomic region of growth related QTL. Lastly all differentially expressed transcripts in brain, liver and muscle of the European sea bass with divergent specific growth rates were mapped to gene pathways and networks and the regulatory pathways most affected identified and established the tissue specific changes underlying the divergent SGR. Owing to the importance of European sea bass to Mediterranean aquaculture and the developed genomics resources from the present thesis and from other studies it should be possible to implement genetic selection programs using marker assisted selection.
Resumo:
The Mozambique tilapia (Oreochromis mossambicus) is a maternal mouthbrooding cichlid from the southern Africa. The olfactory sensitivity of the species to 20 amino acids was assessed using the electro-olfactogram (EOG). We estimated whether the olfactory potency of the polar fraction of male urine can be explained by the presence of identified amino acids. In addition, filtrate and amino acid mixture of the urine of Nile tilapia were used to estimate their olfactory potency for O.mossambicus. Finally, concentrations of the main amino acids were measured in the urine of males of different social status and the correlations between amino acid concentration and hierarchical status were explored. L-cysteine, L-glutamine and L-threonine were the most potent stimuli at M while L-proline and L-aspartate were the least potent. Four groups of amino acids were identified according to their thresholds of detection and three groups – according to the similarity of their ɣ-factors. The estimated threshold of detection for O.mossambicus mixture was higher than that for the filtrate. On the contrary, the threshold of detection for the mixture of Nile tilapia was lower than that for the filtrate The concentration of L-arginine in the urine was positively correlated with fish dominance index. Both L-arginine and L-glutamic acid concentrations had much greater variability in dominant males (DI˃0.5) than in subordinate males (DI˂0.5). The urinary concentrations of L-phenylalanine had similar variability in dominant and subordinate groups. The Mozambique tilapia has olfactory sensitivity to all twenty amino acids tested. The fish showed more acute sensitivity to conspecific urine filtrate than to the heterospecific. Olfactory potency of O.mossambicus filtrate can be largely but not fully explained by the presence of L-arginine, L-glutamic acid and L-phenylalanine. Larginine and L-glutamic acid may indicate the dominance status of the fish and, possibly, individual identity.
Resumo:
Every can of tuna purchased by the consumer has taken a long journey before reaching the supermarket shelves. For each can bought there is a lengthy process from sea to shelf. A large proportion of the tuna cans purchased in the European Union come all the way from West Africa; a developing region with a high dependency on fisheries. Amidst an ever-increasing demand for tuna products the global tuna fisheries are set to continue expanding, apparently one of the last natural resource based industries fit to do so in West Africa. Tuna is the biggest fisheries export and dominates the fisheries sector in Ghana, a country situated in West Africa. This thesis aims to understand how this globally important industrial fisheries functions in terms of procedures, practices, Governance and finance. Socioeconomic influences, in the setting of a developing country, were also examined. For these purposes a Value Chain Analysis was employed. A Value Chain Analysis is a tool commonly used to understand how different companies and organizations participate in a domestic policy environment, which directs conclusion in the global economy. This analysis has the potential to allow researchers to fully understand a commodity chain and hence identify realistic opportunities for consequential improvements. Interviews and questionnaires were employed in-field Ghana along with secondary data collection techniques. It was found that the fisheries functions at the production level under influences from large multinational companies and tends to operate with a certain degree of lawlessness. Governance over the value chain is well defined, however implementation is poor or non-existent. The processors, whom are also dominated by multinationals, exert some control over the producers and their sales, however the high value links which are highlighted occur at the retail stage. Socioeconomic dynamics acting in the chain included the lack of communication between the public and private sector, power imbalances amongst players at production, the role of local businesswomen as actors in the chain and the general characteristics of the workers in the industry. Value addition and upgrading are needed the most in Governance over the chain, especially within Monitoring, Control and Surveillance. The results of the study provide a wealth of material about the components of a cost-heavy fishing industry in a developing country; an industry on which many eyes have recently turned due to illegal fishing activities. It highlights clearly where funding and future focus are needed. This value chain can be used as a guide for those that need to comprehend the financial complexities and real life dynamics of the Ghanaian tuna fishing industry today.
Resumo:
In ecotoxicology a major focus is in the aquatic environment, not only because it presents a great economic value to man but it is an ecosystem widely affected by the growing anthropogenic pollution. Most of the studies performed relate to adverse effects in development, reproductive or endocrine disruption but little is known about the possible effects in bone formation and skeletal development. In this study, we set out to evaluate the effects of 8 aquatic pollutants on the skeletal development using an in vivo system, the zebrafish larvae aged 20 days post-fertilization, through chronic exposure. Several endpoints were considered such as the cumulative mortality, total length, occurrence of skeletal deformities and marker gene expression. We were able to establish LD50 values for some pollutants, like 3-methylcholanthrene, lindane, diclofenac, cobalt and vanadate and found that the total length was not affected by any of the pollutants tested. Cobalt was the most harmful chemical to affect hatching time, severely affecting the ability of the zebrafish embryos to hatch and overall the number of deformities increased upon exposure to tested chemicals but no patterns of deformities were identified. We also propose that 3-methylcholanthrene has an osteogenic effect, affecting osteoblast and osteoclast function and that op levels can act as a mediator of 3-methylcholanthrene toxic stress to the osteoblast. In turn we found naphthalene to probably have a chondrogenic effect. Our results provided new insights into the potential osteotoxicity of environmental pollutants. Future studies should aim at confirming these preliminary data and at determining mechanisms of osteotoxicity.
Resumo:
Cardiogenesis is a delicate and complex process that requires the coordination of an intricate network of pathways and the different cell types. Therefore, understanding heart development at the morphogenetic level is an essential requirement to uncover the causes of congenital heart disease and to provide insight for disease therapies. Mouse Cerberus like 2 (Cerl2) has been defined as a Nodal antagonist in the node with an important role in the Left-Right (L/R) axis establishment, at the early embryonic development. As expected, Cerl2 knockout mice (Cerl2-/-) showed multiple laterality defects with associated cardiac failure. In order to identify the endogenous role of Cerl2 during heart formation independent of its described functions in the node, we accurately analyzed animals where laterality defects were not present. We thereby unravel the consequences of Cerl2 lossof- function in the heart, namely increased left ventricular thickness due to hyperplasia of cardiomyocytes and de-regulated expression of cardiac genes. Furthermore, the Cerl2 mutant neonates present impaired cardiac function. Once that the cardiac expression of Cerl2 is mostly observed in the left ventricle until around midgestration, this result suggest a specific regulatory role of Cerl2 during the formation of the left ventricular myoarchitecture. Here, we present two possible molecular mechanisms underlying the cardiac Cerl2 function, the regulation of Cerl2 antagonist in activation of the TGFßs/Nodal/Activin/Smad2 signaling identified by increased Smad2 phosphorilation in Cerl2-/- hearts and the negative feedback between Cerl2 and Wnt/ß-catenin signaling in heart formation. In this work and since embryonic stem cells derived from 129 mice strain is extensively used to produce targeted mutants, we also present echocardiographic reference values to progressive use of juveniles and young adult 129/Sv strain in cardiac studies. In addition, we investigate the cardiac physiology of the surviving Cerl2 mutants in 129/Sv background over time through a follow-up study using echocardiographic analysis. Our results revealed that Cerl2-/- mice are able to improve and maintain the diastolic and most of systolic cardiac physiologic parameters as analyzed until young adult age. Since Cerl2 is no longer expressed in the postnatal heart, we suggest that an intrinsic and compensatory mechanism of adaptation may be active for recovering the decreased cardiac function found in Cerl2 mutant neonates. Altogether, these data highlight the role of Cerl2 during embryonic heart development in mice. Furthermore, we also suggest that Cerl2-/- may be an interesting model to uncover the molecular, cellular and physiological mechanisms behind the improvement of the cardiac function, contributing to the development of therapeutic approaches to treat heart failures.