969 resultados para POLYMERIC PRECURSOR METHOD
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Calcium modified lead titanate sol was synthesized using a soft solution processing, the so-called polymeric precursor method. In soft chemistry method, soluble precursors such as lead acetate trihydrate, calcium carbonate and titanium isopropoxide, as starting materials, were mixed in aqueous solution. Pb0.7Ca0.3TiO3 thin films were deposited on platinum-coated silicon and quartz substrates by means of the spinning technique. The surface morphology and crystal structure, dielectric and optical properties of the thin films were investigated. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) capacitors. The typical measured small signal dielectric constant and dissipation factor at a frequency of 100 kHz were 299 and 0.065, respectively, for a thin film with 230 nm thickness annealed at 600degreesC for 2 h. The remanent polarization (2P(r)) and coercive field (E-c) were 32 muC/cm(2) and 100 kV/cm, respectively. Transmission spectra were recorded and from them, refractive index, extinction coefficient, and band gap energy were calculated. Thin films exhibited good optical transmissivity, and had optical direct transitions. The present study confirms the validity of the DiDomenico model for the interband transition, with a single electronic oscillator at 6.858 eV. The optical dispersion behavior of PCT thin film was found to fit well the Sellmeir dispersion equation. The band gap energy of the thin film, annealed at 600degreesC, was 3.56 eV. The results confirmed that soft solution processing provides an inexpensive and environmentally friendly route for the preparation of PCT thin films.
Resumo:
Pb1-XLaXTiO3 thin films, (X = 0.0; 13 and 0.27 mol%) were prepared by the polymeric precursor method. Thin films were deposited on Pt/Ti/SiO2/Si (1 1 1), Si (1 0 0) and glass substrates by spin coating, and annealed in the 200-300degreesC range in an O-2 atmosphere. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used for the microstructural characterization of the thin films. Photoluminescence (PL) at room temperature has been observed in thin films of (PbLa)TiO3. The films deposited on Pt/Ti/SiO2/Si substrates present PL intensity greater than those deposited on glass and silicon substrates. The intensity of PL in these thin films was found to be dependent on the thermal treatment and lanthanum molar concentration. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Nanostructured KSr2Nb5O15 oxide was synthesized by the polymeric precursor method, a chemical synthesis route based on the Pechini's method. The X-ray diffraction (XRD) pattern of the calcined powder at 1150 degreesC were performed in the angular range 5 less than or equal to 20 less than or equal to 120degrees with a 0.02degrees step and a fixed counting time of 30 s. The XRD data were analyzed by the Rietveld refinements using the FullProf software. The results C showed a tetragonal system with the tetragonal tungsten bronze structure (TTB) type (a = 12.4585 (2) Angstrom and c = 3.9423 (6) Angstrom, V = 611,90 (2) Angstrom). In this work, the sites occupancy by the K+ and Sr2+ cations on the TTB type structure were determined. The thermal parameters (B) were analyzed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
NiWO4 and ZnWO4 were synthesized by the polymeric precursor method at low temperatures with zinc or nickel carbonate as secondary phase. The materials were characterized by thermal analysis (TG/DTA), infrared spectroscopy, UV-Vis spectroscopy and X-ray diffraction. NiWO4 was crystalline after calcination at 350 A degrees C/12 h while ZnWO4 only crystallized after calcination at 400 A degrees C for 2 h. Thermal decomposition of the powder precursor of NiWO4 heat treated for 12 h had one exothermic transition, while the precursor heat treated for 24 h had one more step between 600 and 800 A degrees C with a small mass gain. Powder precursor of ZnWO4 presented three exothermic transitions, with peak temperatures and mass losses higher than NiWO4 has indicating that nickel made carbon elimination easier.
Resumo:
Alkaline earth stannates have recently become important materials in ceramic technology due to its application as humidity sensor. In this work, alkaline earth stannates doped with Fe3+ were synthesized by the polymeric precursor method, with calcination at 300 A degrees C/7 h and between 400 and 1100 A degrees C/4 h. The powder precursors were characterized by TG/DTA after partial elimination of carbon. Characterization after the second calcination step was done by X-ray diffraction, infrared spectroscopy, and UV-vis spectroscopy. Results confirmed the formation of the SrSnO3:Fe with orthorhombic perovskite structure, besides SrCO3 as secondary phase. Crystallization occurred at 600 A degrees C, being much lower than the crystallization temperature of perovskites synthesized by solid state reaction. The analysis of TG curves indicated that the phase crystallization was preceded by two thermal decomposition steps. Carbonate elimination occurred at two different temperatures, around 800 A degrees C and above 1000 A degrees C.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
SrBi2(Ta0.5Nb0.48W0.02)(2)O-9 powders (SBTN-W) were prepared by the polymeric precursor method. The influence of annealing temperature on the phase formation and specific surface area was evaluated. TG/DTA associated with X-ray diffraction (XRD) analyses showed the formation of perovskite phase at around 500-600 degrees C. An orthorhombic structure with A21am space group was identified by Rietveld refinement. BET analysis revealed that the specific surface area reduces with increasing thermal annealing. SEM micrographies showed grains in an almost-spherical morphology with the presence of agglomerates. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Ultrafine ordered and disordered SrZrO3 powders were prepared by the polymeric precursor method. The structural evolution from structural disorder to order was monitored by X-ray diffraction and X-ray absorption near-edge spectroscopy. Complex cluster vacancies [ZrO5 center dot V-O(Z)] and [SrOII center dot V-O(Z)] (where V-O(Z) = V-O(X), V-O(center dot) and V-O(center dot center dot)) were proposed for disordered powders. The intense violet-blue light photoluminescence emission measured at room temperature in the disordered powders was attributed to complex cluster vacancies. High-level quantum mechanical calculations within the density functional theory framework were used to interpret the experimental results. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this study undoped and Cr, Sb or Mo doped TiO(2) were synthesized by polymeric precursor method and characterized by X-ray diffraction, UV-VIS spectroscopy, infrared spectroscopy and thermogravimetry (TG). The TG curves showed a continuous mass loss assigned to the hydroxyl elimination and Cr(6+) reduction. Doped TiO(2) samples showed a higher mass loss assigned to water and gas elimination at lower temperatures. In these doped materials a decrease in the anatase-rutile phase transition temperature was observed. After calcination at 1,000 A degrees C, rutile was obtained as a single phase material without the presence of Cr(6+).
Resumo:
SrBi2(Ta0.5Nb0.5)(2)O-9 (SBTN) thin films were obtained by polymeric precursor method on Pt/Ti/SiO2/Si(1 0 0) substrates. The film is dense and crack-free after annealing at 700 degrees C for 2 h in static air. Crystallinity and morphological characteristic were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FEG-SEM) and atomic force microscopy (AFM). The films displayed rounded grains with a superficial roughness of 3.5 nm. The dielectric permittivity was 122 with loss tangent of 0.040. The remanent polarization (P-r) and coercive field (E-c) were 5.1 mu C/cm(2) and 96 kV/cm, respectively. (C) 2007 Published by Elsevier B.V.
Resumo:
SrSnO3 was synthesized by the polymeric precursor method with elimination of carbon in oxygen atmosphere at 250 A degrees C for 24 h. The powder precursors were characterized by TG/DTA and high temperature X-ray diffraction (HTXRD). After calcination at 500, 600 and 700 A degrees C for 2 h, samples were evaluated by X-ray diffraction (XRD), infrared spectroscopy (IR) and Rietveld refinement of the XRD patterns for samples calcined at 900, 1,000 and 1,100 A degrees C. During thermal treatment of the powder precursor ester combustion was followed by carbonate decomposition and perovskite crystallization. No phase transition was observed as usually presented in literature for SrSnO3 that had only a rearrangement of SnO6 polyhedra.