917 resultados para NO CO O-2
Resumo:
A new stomatal proxy-based record of CO2 concentrations ([CO2]), based on Betula nana (dwarf birch) leaves from the Hässeldala Port sedimentary sequence in south-eastern Sweden, is presented. The record is of high chronological resolution and spans most of Greenland Interstadial 1 (GI-1a to 1c, Allerød pollen zone), Greenland Stadial 1 (GS-1, Younger Dryas pollen zone) and the very beginning of the Holocene (Preboreal pollen zone). The record clearly demonstrates that i) [CO2] were significantly higher than usually reported for the Last Termination and ii) the overall pattern of CO2 evolution through the studied time period is fairly dynamic, with significant abrupt fluctuations in [CO2] when the climate moved from interstadial to stadial state and vice versa. A new loss-on-ignition chemical record (used here as a proxy for temperature) lends independent support to the Hässeldala Port [CO2] record. The large-amplitude fluctuations around the climate change transitions may indicate unstable climates and that " tipping-point" situations were involved in Last Termination climate evolution. The scenario presented here is in contrast to [CO2] records reconstructed from air bubbles trapped in ice, which indicate lower concentrations and a gradual, linear increase of [CO2] through time. The prevalent explanation for the main climate forcer during the Last Termination being ocean circulation patterns needs to re-examined, and a larger role for atmospheric [CO2] considered.
Resumo:
High temperature co-electrolysis of steam and carbon dioxide using a solid oxide cell (SOC) has been shown to be an efficient route to produce syngas (CO + H-2), which can then be converted to synthetic fuel. Optimization of co-electrolysis requires detailed understanding of the complex reactions, transport processes and degradation mechanisms occurring in the SOC during operation. Thermal imaging, Raman spectroscopy and Diffuse Reflectance Infrared Fourier Transform Spectroscopy are being developed to probe in-situ both the reactions occurring during operation and any associated changes within the structure of the electrodes and electrolyte. Here we discuss the challenges in designing experimental apparatus suitable for high temperature operation with optical spectroscopic access to the areas of the SOC that are of interest. In particular, issues with sealing, temperature gradients, signal strength and cell configuration are discussed and final designs are presented. Preliminary results obtained during co-electrolysis operation are also presented.
Resumo:
Three thiourea bridged 2,2’-bipyridine ligands bearing either a single thiourea group (L1), or two units separated by either a para (L2) or meta-substituted (L3) aromatic spacer, along with the corresponding bis(fac-tricarbonylrhenium(I)) complexes are reported. The three ligands all show the anticipated binding to acetate. However 1H NMR titrations reveal an unusual cooperative binding to, and selectivity for, two dihydrogenphosphate ions. The rhenium(I) complexes similarly demonstrate unusual sigmoidal titration curves, and in the case of {Re(CO)3Br}2(-L1) a surprisingly strong interaction to two anions. These were further exemplified in the emissive behaviour leading to the conclusion that there is an unusual interaction with dihydrogenphosphate, giving an initial increase in the emission, followed by a decrease and a blue shift in wavelength possibly as a result of partial deprotonation. It appears that dihydrogenphosphate binds cooperatively, with the addition of a second anion enhancing the interaction of the first, probably by proton transfer; this could explain the remarkable selectivity for phosphate seen with many reported anion receptors.
Resumo:
In the exploration of highly efficient direct ethanol fuel cells (DEFCs), how to promote the CO2 selectivity is a key issue which remains to be solved. Some advances have been made, for example, using bimetallic electrocatalysts, Rh has been found to be an efficient additive to platinum to obtain high CO2 selectivity experimentally. In this work, the mechanism of ethanol electrooxidation is investigated using first principles method. It is found that CH3CHOH* is the key intermediate during ethanol electrooxidation and the activity of β-dehydrogenation is the rate determining factor that affects the completeness of ethanol oxidation. In addition, a series of transition metals (Ru, Rh, Pd, Os and Ir) are alloyed on the top layer of Pt(111) in order to analyze their effects. The elementary steps, α-, β-C-H bond and C-C bond dissociations are calculated on these bimetallic M/Pt(111) surfaces and the formation potential of OH* from water dissociation is also calculated. We find that the active metals increase the activity of β-dehydrogenation but lower the OH* formation potential resulting in the active site being blocked. By considering both β-dehydrogenation and OH* formation, Ru, Os and Ir are identified to be unsuitable for the promotion of CO2 selectivity and only Rh is able to increase the selectivity of CO2 in DEFCs.
Resumo:
Using a small planetary ball mill, liquid-assisted grinding (LAG) of metal salts or oxides (ZnO, CdO, CdCO3, Cu(OAc)(2)center dot H2O, Co(OAc)(2)center dot 4H(2)O, Mn(OAc)(2)center dot 4H(2)O, Ni(OAc)(2)center dot 4H(2)O, FeSO4 center dot 7H(2)O) with two equivalents of isonicotinic acid (HINA) and small amounts of water ( up to 5.6 molar equivalents) gave discrete aquo complexes trans-[M(INA)(2)(OH2)(4)] (M = Zn, Cd, Cu, Fe, Co, Ni, Mn) efficiently within 30 min. For M = Zn, Cd and Cu these complexes readily undergo reversible formal dehydration to the extended network structures [M(INA)(2)] (M = Zn, Cu) or [Cd(INA)(2)(OH2)]center dot DMF by further LAG with non-aqueous liquids such as methanol or DMF. Overall, the mechanochemical dehydrations are more effective than heating or immersion in bulk solvents. The work demonstrates a two-step mechanochemical synthesis of coordination networks via discrete aquo complexes which may be preferable to single step reactions or grinding-annealing procedures in some cases. For example, the two step method was the only way to prepare [Cd(INA)(2)(OH2)]center dot DMF mechanochemically and the porous network Cu(INA)(2) could not be obtained from the aquo complex by heating.
Resumo:
The performance of NOx storage and reduction over 1.5 wt% Pt/20 wt% KNO3/K2Ti8O17 and 1.5 wt% Pt/K2Ti8O17 catalysts has been investigated using combined fast transient kinetic switching and isotopically labelled (NO)-N-15 at 350 degrees C. The evolution of product N-2 has revealed two significant peaks during 60 s lean/1.3 s rich switches. It also found that the presence of CO2 in the feed affects the release of N-2 in the second peak. Regardless of the presence/absence of water in the feed, only one peak of N-2 was observed in the absence of CO2. Gas-phase NH3 was not observed in any of the experiments. However, in the presence of CO2 the results obtained from in situ DRIFTS-MS analysis showed that isocyanate species are formed and stored during the rich cycles, probably from the reaction between NOx and CO, in which CO was formed via the reverse water-gas shift reaction.
Resumo:
Chloride-induced corrosion of steel in reinforced concrete structures is one of the main problems affecting their durability and it has been studied for decades, but most of them have focused on concrete without cracking or not subjected to any structural load. In fact, concrete structures are subjected to various types of loads, which lead to cracking when the tensile stress in concrete exceeds its tensile strength. Cracking could increase transport properties of concrete and accelerate the ingress of harmful substances (Cl -, O2, H2 O, CO2). This could initiate and accelerate different types of deterioration processes in concrete, including corrosion of steel reinforcement. The expansive products generated by the deterioration processes themselves can initiate cracking. The success of concrete patch repairs can also influence microcracking at the interface as well as the patch repair itself. Therefore, monitoring the development of microcracking in reinforced concrete members is extremely useful to assess the defects and deterioration in concrete structures. In this paper, concrete beams made using 4 different mixes were subjected to three levels of sustained lateral loading (0%, 50% and 100% of the load that can induce a crack with width of 0.1mmon the tension surface of beams - F 0.1) and weekly cycles of wetting (1 day)/drying (6 days) with chloride solution. The development of microcracking on the surface of concrete was monitored using the Autoclam Permeability System at every two weeks for 60 weeks. The ultrasonic pulse velocity of the concrete was also measured along the beam by using the indirect method during the test period. The results indicated that the Autoclam Permeability System was able to detect the development of microcracks caused by both sustained loading and chloride induced corrosion of steel in concrete. However, this was not the case with the ultrasonic method used in the work (indirect method applied along the beam); it was sensitive to microcracking caused by sustained loading but not due to corrosion. © 2014 Taylor & Francis Group.
Resumo:
In this paper, we have reported the CO2 solubility in different pure alkyl carbonate solvents (EC, DMC, EMC, DEC) and their binary mixtures as EC/DMC, EC/EMC, and EC/DEC and for electrolytes [solvent + lithium salt] LiX (X = LiPF6, LiTFSI, or LiFAP) as a function of the temperature and salt concentration. To understand the parameters that influence the structure of the solvents and their ability to dissolve CO2, through the addition of a salt, we first analyzed the viscosities of EC/DMC + LiX mixtures by means of a modified Jones–Dole equation. The results were discussed considering the order or disorder introduced by the salt into the solvent organization and ion solvation sphere by calculating the effective solute ion radius, rs. On the basis of these results, the analysis of the CO2 solubility variations with the salt addition was then evaluated and discussed by determining specific ion parameters Hi by using the Setchenov coefficients in solution. This study showed that the CO2 solubility has been affected by the shape, charge density, and size of the ions, which influence the structuring of the solvents through the addition of a salt and the type of solvation of the ions.
Resumo:
Photoexcited electrochemically generated quinone radical anions reduced 1,2-dibromobenzene to bromobenzene, 1,4-dibromobenzene to bromobenzene and 4-chlorobenzonitrile to benzonitrile. In the presence of anthracene, 2-bromophenyl-, 4-bromophenyl- and 4-cyanophenyl-anthracenes were formed. With acetaldehyde, acetone, acetophenone, benzaldehyde and benzophenone, the major products were the corresponding pinacols, with small amounts of the two-electron secondary alcohols. In acetonitrile as solvent, cinnamonitriles, hydrocinnamonitriles and phenylglutaronitriles were formed in addition to the alcohols. Glyoxylic acid was reduced to tartaric, glycolic and malic acids. The reduction of CO2 was unsuccessful.
Resumo:
Aqueous solutions of CO2 containing tetramethylammonium chloride were photolysed with visible light in the presence of colloidal ZnS to yield tartaric acid, glyoxylic acid, oxalic acid, formic acid and formaldehyde.
Resumo:
Density functional theory calculations were carried out to examine the mechanism of ethanol decomposition on the Rh(211) surface. We found that there are two possible decomposition pathways: (1) CH(3)CH(2)OH -> CH(3)CHOH -> CH(3)COH -> CH(3)CO -> CH(3) + CO -> CH(2) + CO -> CH + CO -> C + CO and (2) CH(3)CH(2)OH -> CH(3)CHOH -> CH(3)COH -> CH(2)COH -> CHCOH -> CHCO -> CH + CO -> C + CO. Both pathways have a common intermediate of CH(3)COH, and the key step is the formation of CH(3)CHOH species. According to our calculations, the mechanism of ethanol decomposition on Rh(211) is totally different from that on Rh(111): the reaction proceeds via CH(3)COH rather than an oxametallacycle species (-CH(2)CH(2)O- for Rh( 111)), which implies that the decomposition process is structure sensitive. Further analyses on electronic structures revealed that the preference of the initial C(alpha)-H path is mainly due to the significant reduction of d-electron energy in the presence of the transition state (TS) complex, which may stabilize the TS-surface system. The present work first provides a clear picture for ethanol decomposition on stepped Rh(211), which is an important first step to completely understand the more complicated reactions, like ethanol steam reforming and electrooxidation.
Resumo:
Autoclaved soil is commonly used for the study of xenobiotic sorption and as an abiotic control in biodegradation experiments. Autoclaving has been reported to alter soil physico-chemical and xenobiotic sorption characteristics such that comparison of autoclaved with non-autoclaved treatments in soil aging and bioavailability studies may yield misleading results. Experiments could be improved by using autoclaved soil re-inoculated with indigenous microorganisms as an additional or alternative non-sterile treatment for comparison with the sterile, autoclaved control. We examined the effect of autoclaving (3 x 1 h, 121°C, 103.5 KPa) on the physico-chemical properties of a silt loam soil (pH 7.2, 2.3% organic carbon) and the establishment of indigenous microorganisms reintroduced after autoclaving. Sterilisation by autoclaving significantly (p ≤ 0.05) decreased pH (0.6 of a unit) and increased concentrations of water-soluble organic carbon (WSOC; nontreated = 75 mg kg-1; autoclaved = 1526 mg kg-1). The initial first-order rate of 14C-2,4-dichloro-UL-phenol (2,4-DCP) adsorption to non-treated, autoclaved and re-inoculated soil was rapid (K1 = 16.8-24.4 h-1) followed by a slower linear phase (K2). In comparison with autoclaved soil (0.038% day-1), K2 values were higher for re-inoculated (0.095% day-1) and nontreated (0.181% day-1) soil. This was attributed to a biological process. The Freundlich adsorption coefficient (K(f)) for autoclaved soil was significantly (p ≤ 0.05) higher than for re-inoculated or non-treated soil. Increased adsorption was attributed to autoclaving-induced changes to soil pH and solution composition. Glucose-induced respiration of autoclaved soil after re-inoculation was initially twice that in the non-treated control, but it decreased to control levels by day 4. This reduction corresponded to a depletion of WSOC. 2,4-DCP mineralisation experiments revealed that the inoculum of nonsterile soil (0.5 g) contained 2,4-DCP-degrading microorganisms capable of survival in autoclaved soil. The lag phase before detection of significant 2,4-DCP mineralisation was reduced (from 7 days to ≤3 days) by pre-incubation of re-inoculated soils for 7 and 14 days before 2,4-DCP addition. This was attributed to the preferential utilisation of WSOC prior to the onset of 2,4-DCP mineralisation. Cumulative 14CO2 evolved after 21 days was significantly lower (p ≤ 0.05) from non-treated soil (25.3%) than re-inoculated soils (ca 45%). Experiments investigating sorption-biodegradation interactions of xenobiotics in soil require the physico-chemical properties of sterile and non-sterile treatments to be as comparable as possible. For fundamental studies, we suggest using re-inoculated autoclaved soil as an additional or alternative non-sterile treatment.
Resumo:
The effect of 100 μg 1,2-dichlorobenzene (1,2-DCB) g-1 dry weight (dw) of soil introduced either as a single dose or multiple (10 fortnightly) doses of 10 μg g-1 dw, on the microbial biomass, diversity of culturable bacterial community and the rate of 1,2-DCB mineralisation, were compared. After 22 weeks exposure both application regimes significantly reduced total bacterial counts and viable fungal hyphal length. The single dose had the greatest overall inhibitory effect, although the extent of inhibition varied throughout the study. Total culturable bacterial counts, determined after 22 weeks exposure showed little response to 1,2-DCB, but pseudomonad counts in single and multiple treatments were reduced to 9.7 and 0.147%, respectively, of the numbers detected in the control soil. The effect of 1,2-DCB application on the taxonomic composition of the culturable bacteria community was determined by fatty acid methyl ester (FAME) analysis. Compared to control soils, the single dose treatment had a lower percentage of Arthrobacter and Micrococcus. Multiple applications had a significant effect upon pseudomonad abundance, which represented only 2% of the identified community, compared to 45.6% in the control. The multi-dosed soils contained a high percentage of bacilli (> 25%). The effects of 1,2-DCB applications on the metabolic potential of the soil microbial community was determined by BIOLOG profiling. The number of carbon compounds utilised by the community in the multi-dosed soils (49 positives) was significantly less (P < 0.05) than detected in the single dose treatment (76) and control (66). The rate of 1,2-DCB mineralisation, determined by 14CO2 production from radiolabelled [UL-14C] 1,2-DCB, declined throughout the study, and after 22 weeks was slightly but significantly (P < 0.05) lower in the multiply- than the singly-dosed soils. The differential response to 1,2-DCB treatments was attributed to its reduced bioavailability in soils after a single exposure, compared to multiple applications.
Resumo:
To determine the effect of microbial metabolites on the release of root exudates from perennial ryegrass, seedlings were pulse labelled with [14C]-CO2 in the presence of a range of soil micro-organisms. Microbial inoculants were spatially separated from roots by Millipore membranes so that root infection did not occur. Using this technique, only microbial metabolites affected root exudation. The effect of microbial metabolites on carbon assimilation and distribution and root exudation was determined for 15 microbial species. Assimilation of a pulse label varied by over 3.5 fold, dependent on inoculant. Distribution of the label between roots and shoots also varied with inoculant, but the carbon pool that was most sensitive to inoculation was root exudation. In the absence of a microbial inoculant only 1% of assimilated label was exuded. Inoculation of the microcosms always caused an increase in exudation but the percentage exuded varied greatly, within the range of 3-34%. © 1995 Kluwer Academic Publishers.
Resumo:
The rhizosphere is a major sink for photo-assimilated carbon and quantifying inputs into this sink is one of the main goals of rhizosphere biology as organic carbon lost from plant roots supports a higher microbial population in the rhizosphere compared to bulk soil. Two fundamentally different14CO2 labelling strategies have been developed to estimate carbon fluxes through the rhizosphere - continuous feeding of shoots with labelled carbon dioxide and pulse-chase experiments. The biological interpretation that can be placed on the results of labelling experiments is greatly biased by the technique used. It is the purpose of this paper to assess the advantages, disadvantages and the biological interpretation of both continuous and pulse labelling and to consider how to partition carbon fluxes within the rhizosphere. © 1994 Kluwer Academic Publishers.