892 resultados para Multi-objective algorithm
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Predição de estruturas de proteínas (PSP) é um problema computacionalmente complexo. Modelos simplificados da molécula proteica (como o Modelo HP) e o uso de Algoritmos Evolutivos (AEs) estão entre as principais técnicas investigadas para PSP. Entretanto, a avaliação de uma estrutura representada pelo Modelo HP considera apenas o número de contatos hidrofóbicos, não possibilitando distinguir entre estruturas com o mesmo número de contatos hidrofóbicos. Neste trabalho, é apresentada uma nova formulação multiobjetivo para PSP em Modelo HP. Duas métricas são avaliadas: o número de contatos hidrofóbicos e a distância entre os aminoácidos hidrofóbicos, as quais são tratados pelo AE Multiobjetivo em Tabelas (AEMT). O algoritmo mostrou-se rápido e robusto.
Resumo:
[EN]This Ph.D. thesis presents a general, robust methodology that may cover any type of 2D acoustic optimization problem. A procedure involving the coupling of Boundary Elements (BE) and Evolutionary Algorithms is proposed for systematic geometric modifications of road barriers that lead to designs with ever-increasing screening performance. Numerical simulations involving single- and multi-objective optimizations of noise barriers of varied nature are included in this document. results disclosed justify the implementation of this methodology by leading to optimal solutions of previously defined topologies that, in general, greatly outperform the acoustic efficiency of classical, widely used barrier designs normally erected near roads.
Resumo:
In the present work, the multi-objective optimization by genetic algorithms is investigated and applied to heat transfer problems. Firstly, the work aims to compare different reproduction processes employed by genetic algorithms and two new promising processes are suggested. Secondly, in this work two heat transfer problems are studied under the multi-objective point of view. Specifically, the two cases studied are the wavy fins and the corrugated wall channel. Both these cases have already been studied by a single objective optimizer. Therefore, this work aims to extend the previous works in a more comprehensive study.
Resumo:
This dissertation presents the competitive control methodologies for small-scale power system (SSPS). A SSPS is a collection of sources and loads that shares a common network which can be isolated during terrestrial disturbances. Micro-grids, naval ship electric power systems (NSEPS), aircraft power systems and telecommunication system power systems are typical examples of SSPS. The analysis and development of control systems for small-scale power systems (SSPS) lacks a defined slack bus. In addition, a change of a load or source will influence the real time system parameters of the system. Therefore, the control system should provide the required flexibility, to ensure operation as a single aggregated system. In most of the cases of a SSPS the sources and loads must be equipped with power electronic interfaces which can be modeled as a dynamic controllable quantity. The mathematical formulation of the micro-grid is carried out with the help of game theory, optimal control and fundamental theory of electrical power systems. Then the micro-grid can be viewed as a dynamical multi-objective optimization problem with nonlinear objectives and variables. Basically detailed analysis was done with optimal solutions with regards to start up transient modeling, bus selection modeling and level of communication within the micro-grids. In each approach a detail mathematical model is formed to observe the system response. The differential game theoretic approach was also used for modeling and optimization of startup transients. The startup transient controller was implemented with open loop, PI and feedback control methodologies. Then the hardware implementation was carried out to validate the theoretical results. The proposed game theoretic controller shows higher performances over traditional the PI controller during startup. In addition, the optimal transient surface is necessary while implementing the feedback controller for startup transient. Further, the experimental results are in agreement with the theoretical simulation. The bus selection and team communication was modeled with discrete and continuous game theory models. Although players have multiple choices, this controller is capable of choosing the optimum bus. Next the team communication structures are able to optimize the players’ Nash equilibrium point. All mathematical models are based on the local information of the load or source. As a result, these models are the keys to developing accurate distributed controllers.
Resumo:
Adding virtual objects to real environments plays an important role in todays computer graphics: Typical examples are virtual furniture in a real room and virtual characters in real movies. For a believable appearance, consistent lighting of the virtual objects is required. We present an augmented reality system that displays virtual objects with consistent illumination and shadows in the image of a simple webcam. We use two high dynamic range video cameras with fisheye lenses permanently recording the environment illumination. A sampling algorithm selects a few bright parts in one of the wide angle images and the corresponding points in the second camera image. The 3D position can then be calculated using epipolar geometry. Finally, the selected point lights are used in a multi pass algorithm to draw the virtual object with shadows. To validate our approach, we compare the appearance and shadows of the synthetic objects with real objects.
Resumo:
Multi-objective optimization algorithms aim at finding Pareto-optimal solutions. Recovering Pareto fronts or Pareto sets from a limited number of function evaluations are challenging problems. A popular approach in the case of expensive-to-evaluate functions is to appeal to metamodels. Kriging has been shown efficient as a base for sequential multi-objective optimization, notably through infill sampling criteria balancing exploitation and exploration such as the Expected Hypervolume Improvement. Here we consider Kriging metamodels not only for selecting new points, but as a tool for estimating the whole Pareto front and quantifying how much uncertainty remains on it at any stage of Kriging-based multi-objective optimization algorithms. Our approach relies on the Gaussian process interpretation of Kriging, and bases upon conditional simulations. Using concepts from random set theory, we propose to adapt the Vorob’ev expectation and deviation to capture the variability of the set of non-dominated points. Numerical experiments illustrate the potential of the proposed workflow, and it is shown on examples how Gaussian process simulations and the estimated Vorob’ev deviation can be used to monitor the ability of Kriging-based multi-objective optimization algorithms to accurately learn the Pareto front.
Resumo:
These guidelines were developed in the context of working block 3 of the DESIRE project. They address the facilitators in the 18 DESIRE study sites and support them in conducting stakeholder workshops aiming at the selection and decision on mitigation strategies to be implemented in the study site context. The decision-making process is supported by a multi-objective decision support system (MODSS) Software called 'Facilitator'.
Resumo:
Soil degradation is widespread in the Ethiopian Highlands. Its negative impacts on soil productivity contribute to the extreme poverty of the rural population. Soil conservation is propagated as a means of reducing soil erosion, however, it is a costly investment for small-scale farming households. The present study is an attempt to show whether or not selected mechanical Soil and Water Conservation (SWC) technologies are profitable from a farmer’s point of view. A financial Cost-Benefit Analysis (CBA) is carried out to assess whether or not the considered SWC technologies are profitable from a farmer’s point of view. The CBA is supplemented by an evaluation of aspects from the economic and institutional environment. Whether or not soil conservation is profitable from a farmer’s point of view depends on a broad range of factors from the ecological, economic, political, institutional and socio-cultural sphere and also depends on the technology and the prevailing farming system. Because these factors are closely interlinked, it is often not sufficient to change or influence one to make SWC profitable. Several recommendations are formulated with regard to improving the profitability of SWC investments from a farmer’s point of view. Because the reasons for unsustainable resource use are manifold and highly interlinked, only a multi-stakeholder, multi-level and multi-objective approach is likely to offer solutions that address the underlying problems adequately.
Resumo:
El diseño y desarrollo de sistemas de suspensión para vehículos se basa cada día más en el diseño por ordenador y en herramientas de análisis por ordenador, las cuales permiten anticipar problemas y resolverlos por adelantado. El comportamiento y las características dinámicas se calculan con precisión, bajo coste, y recursos y tiempos de cálculo reducidos. Sin embargo, existe una componente iterativa en el proceso, que requiere la definición manual de diseños a través de técnicas “prueba y error”. Esta Tesis da un paso hacia el desarrollo de un entorno de simulación eficiente capaz de simular, analizar y evaluar diseños de suspensiones vehiculares, y de mejorarlos hacia la solución optima mediante la modificación de los parámetros de diseño. La modelización mediante sistemas multicuerpo se utiliza aquí para desarrollar un modelo de autocar con 18 grados de libertad, de manera detallada y eficiente. La geometría y demás características de la suspensión se ajustan a las del vehículo real, así como los demás parámetros del modelo. Para simular la dinámica vehicular, se utiliza una formulación multicuerpo moderna y eficiente basada en las ecuaciones de Maggi, a la que se ha incorporado un visor 3D. Así, se consigue simular maniobras vehiculares en tiempos inferiores al tiempo real. Una vez que la dinámica está disponible, los análisis de sensibilidad son cruciales para una optimización robusta y eficiente. Para ello, se presenta una técnica matemática que permite derivar las variables dinámicas dentro de la formulación, de forma algorítmica, general, con la precisión de la maquina, y razonablemente eficiente: la diferenciación automática. Este método propaga las derivadas con respecto a las variables de diseño a través del código informático y con poca intervención del usuario. En contraste con otros enfoques en la bibliografía, generalmente particulares y limitados, se realiza una comparación de librerías, se desarrolla una formulación híbrida directa-automática para el cálculo de sensibilidades, y se presentan varios ejemplos reales. Finalmente, se lleva a cabo la optimización de la respuesta dinámica del vehículo citado. Se analizan cuatro tipos distintos de optimización: identificación de parámetros, optimización de la maniobrabilidad, optimización del confort y optimización multi-objetivo, todos ellos aplicados al diseño del autocar. Además de resultados analíticos y gráficos, se incluyen algunas consideraciones acerca de la eficiencia. En resumen, se mejora el comportamiento dinámico de vehículos por medio de modelos multicuerpo y de técnicas de diferenciación automática y optimización avanzadas, posibilitando un ajuste automático, preciso y eficiente de los parámetros de diseño. ABSTRACT Each day, the design and development of vehicle suspension systems relies more on computer-aided design and computer-aided engineering tools, which allow anticipating the problems and solving them ahead of time. Dynamic behavior and characteristics are thus simulated accurately and inexpensively with moderate computational times and resources. There is, however, an iterative component in the process, which involves the manual definition of designs in a trialand-error manner. This Thesis takes a step towards the development of an efficient simulation framework capable of simulating, analyzing and evaluating vehicle suspension designs, and automatically improving them by varying the design parameters towards the optimal solution. The multibody systems approach is hereby used to model a three-dimensional 18-degrees-of-freedom coach in a comprehensive yet efficient way. The suspension geometry and characteristics resemble the ones from the real vehicle, as do the rest of vehicle parameters. In order to simulate vehicle dynamics, an efficient, state-of-the-art multibody formulation based on Maggi’s equations is employed, and a three-dimensional graphics viewer is developed. As a result, vehicle maneuvers can be simulated faster than real-time. Once the dynamics are ready, a sensitivity analysis is crucial for a robust optimization. To that end, a mathematical technique is introduced, which allows differentiating the dynamic variables within the multibody formulation in a general, algorithmic, accurate to machine precision, and reasonably efficient way: automatic differentiation. This method propagates the derivatives with respect to the design parameters throughout the computer code, with little user interaction. In contrast with other attempts in the literature, mostly not generalpurpose, a benchmarking of libraries is carried out, a hybrid direct-automatic differentiation approach for the computation of sensitivities is developed, and several real-life examples are analyzed. Finally, a design optimization process of the aforementioned vehicle is carried out. Four different types of dynamic response optimization are presented: parameter identification, handling optimization, ride comfort optimization and multi-objective optimization; all of which are applied to the design of the coach example. Together with analytical and visual proof of the results, efficiency considerations are made. In summary, the dynamic behavior of vehicles is improved by using the multibody systems approach, along with advanced differentiation and optimization techniques, enabling an automatic, accurate and efficient tuning of design parameters.
Resumo:
Esta tesis se ha realizado en el contexto del proyecto UPMSat-2, que es un microsatélite diseñado, construido y operado por el Instituto Universitario de Microgravedad "Ignacio Da Riva" (IDR / UPM) de la Universidad Politécnica de Madrid. Aplicación de la metodología Ingeniería Concurrente (Concurrent Engineering: CE) en el marco de la aplicación de diseño multidisciplinar (Multidisciplinary Design Optimization: MDO) es uno de los principales objetivos del presente trabajo. En los últimos años, ha habido un interés continuo en la participación de los grupos de investigación de las universidades en los estudios de la tecnología espacial a través de sus propios microsatélites. La participación en este tipo de proyectos tiene algunos desafíos inherentes, tales como presupuestos y servicios limitados. Además, debido al hecho de que el objetivo principal de estos proyectos es fundamentalmente educativo, por lo general hay incertidumbres en cuanto a su misión en órbita y cargas útiles en las primeras fases del proyecto. Por otro lado, existen limitaciones predeterminadas para sus presupuestos de masa, volumen y energía, debido al hecho de que la mayoría de ellos están considerados como una carga útil auxiliar para el lanzamiento. De este modo, el costo de lanzamiento se reduce considerablemente. En este contexto, el subsistema estructural del satélite es uno de los más afectados por las restricciones que impone el lanzador. Esto puede afectar a diferentes aspectos, incluyendo las dimensiones, la resistencia y los requisitos de frecuencia. En la primera parte de esta tesis, la atención se centra en el desarrollo de una herramienta de diseño del subsistema estructural que evalúa, no sólo las propiedades de la estructura primaria como variables, sino también algunas variables de nivel de sistema del satélite, como la masa de la carga útil y la masa y las dimensiones extremas de satélite. Este enfoque permite que el equipo de diseño obtenga una mejor visión del diseño en un espacio de diseño extendido. La herramienta de diseño estructural se basa en las fórmulas y los supuestos apropiados, incluyendo los modelos estáticos y dinámicos del satélite. Un algoritmo genético (Genetic Algorithm: GA) se aplica al espacio de diseño para optimizaciones de objetivo único y también multiobjetivo. El resultado de la optimización multiobjetivo es un Pareto-optimal basado en dos objetivo, la masa total de satélites mínimo y el máximo presupuesto de masa de carga útil. Por otro lado, la aplicación de los microsatélites en misiones espaciales es de interés por su menor coste y tiempo de desarrollo. La gran necesidad de las aplicaciones de teledetección es un fuerte impulsor de su popularidad en este tipo de misiones espaciales. Las misiones de tele-observación por satélite son esenciales para la investigación de los recursos de la tierra y el medio ambiente. En estas misiones existen interrelaciones estrechas entre diferentes requisitos como la altitud orbital, tiempo de revisita, el ciclo de vida y la resolución. Además, todos estos requisitos puede afectar a toda las características de diseño. Durante los últimos años la aplicación de CE en las misiones espaciales ha demostrado una gran ventaja para llegar al diseño óptimo, teniendo en cuenta tanto el rendimiento y el costo del proyecto. Un ejemplo bien conocido de la aplicación de CE es la CDF (Facilidad Diseño Concurrente) de la ESA (Agencia Espacial Europea). Está claro que para los proyectos de microsatélites universitarios tener o desarrollar una instalación de este tipo parece estar más allá de las capacidades del proyecto. Sin embargo, la práctica de la CE a cualquier escala puede ser beneficiosa para los microsatélites universitarios también. En la segunda parte de esta tesis, la atención se centra en el desarrollo de una estructura de optimización de diseño multidisciplinar (Multidisciplinary Design Optimization: MDO) aplicable a la fase de diseño conceptual de microsatélites de teledetección. Este enfoque permite que el equipo de diseño conozca la interacción entre las diferentes variables de diseño. El esquema MDO presentado no sólo incluye variables de nivel de sistema, tales como la masa total del satélite y la potencia total, sino también los requisitos de la misión como la resolución y tiempo de revisita. El proceso de diseño de microsatélites se divide en tres disciplinas; a) diseño de órbita, b) diseño de carga útil y c) diseño de plataforma. En primer lugar, se calculan diferentes parámetros de misión para un rango práctico de órbitas helio-síncronas (sun-synchronous orbits: SS-Os). Luego, según los parámetros orbitales y los datos de un instrumento como referencia, se calcula la masa y la potencia de la carga útil. El diseño de la plataforma del satélite se estima a partir de los datos de la masa y potencia de los diferentes subsistemas utilizando relaciones empíricas de diseño. El diseño del subsistema de potencia se realiza teniendo en cuenta variables de diseño más detalladas, como el escenario de la misión y diferentes tipos de células solares y baterías. El escenario se selecciona, de modo de obtener una banda de cobertura sobre la superficie terrestre paralelo al Ecuador después de cada intervalo de revisita. Con el objetivo de evaluar las interrelaciones entre las diferentes variables en el espacio de diseño, todas las disciplinas de diseño mencionados se combinan en un código unificado. Por último, una forma básica de MDO se ajusta a la herramienta de diseño de sistema de satélite. La optimización del diseño se realiza por medio de un GA con el único objetivo de minimizar la masa total de microsatélite. Según los resultados obtenidos de la aplicación del MDO, existen diferentes puntos de diseños óptimos, pero con diferentes variables de misión. Este análisis demuestra la aplicabilidad de MDO para los estudios de ingeniería de sistema en la fase de diseño conceptual en este tipo de proyectos. La principal conclusión de esta tesis, es que el diseño clásico de los satélites que por lo general comienza con la definición de la misión y la carga útil no es necesariamente la mejor metodología para todos los proyectos de satélites. Un microsatélite universitario, es un ejemplo de este tipo de proyectos. Por eso, se han desarrollado un conjunto de herramientas de diseño para encarar los estudios de la fase inicial de diseño. Este conjunto de herramientas incluye diferentes disciplinas de diseño centrados en el subsistema estructural y teniendo en cuenta una carga útil desconocida a priori. Los resultados demuestran que la mínima masa total del satélite y la máxima masa disponible para una carga útil desconocida a priori, son objetivos conflictivos. En este contexto para encontrar un Pareto-optimal se ha aplicado una optimización multiobjetivo. Según los resultados se concluye que la selección de la masa total por satélite en el rango de 40-60 kg puede considerarse como óptima para un proyecto de microsatélites universitario con carga útil desconocida a priori. También la metodología CE se ha aplicado al proceso de diseño conceptual de microsatélites de teledetección. Los resultados de la aplicación del CE proporcionan una clara comprensión de la interacción entre los requisitos de diseño de sistemas de satélites, tales como la masa total del microsatélite y la potencia y los requisitos de la misión como la resolución y el tiempo de revisita. La aplicación de MDO se hace con la minimización de la masa total de microsatélite. Los resultados de la aplicación de MDO aclaran la relación clara entre los diferentes requisitos de diseño del sistema y de misión, así como que permiten seleccionar las líneas de base para el diseño óptimo con el objetivo seleccionado en las primeras fase de diseño. ABSTRACT This thesis is done in the context of UPMSat-2 project, which is a microsatellite under design and manufacturing at the Instituto Universitario de Microgravedad “Ignacio Da Riva” (IDR/UPM) of the Universidad Politécnica de Madrid. Application of Concurrent Engineering (CE) methodology in the framework of Multidisciplinary Design application (MDO) is one of the main objectives of the present work. In recent years, there has been continuing interest in the participation of university research groups in space technology studies by means of their own microsatellites. The involvement in such projects has some inherent challenges, such as limited budget and facilities. Also, due to the fact that the main objective of these projects is for educational purposes, usually there are uncertainties regarding their in orbit mission and scientific payloads at the early phases of the project. On the other hand, there are predetermined limitations for their mass and volume budgets owing to the fact that most of them are launched as an auxiliary payload in which the launch cost is reduced considerably. The satellite structure subsystem is the one which is most affected by the launcher constraints. This can affect different aspects, including dimensions, strength and frequency requirements. In the first part of this thesis, the main focus is on developing a structural design sizing tool containing not only the primary structures properties as variables but also the satellite system level variables such as payload mass budget and satellite total mass and dimensions. This approach enables the design team to obtain better insight into the design in an extended design envelope. The structural design sizing tool is based on the analytical structural design formulas and appropriate assumptions including both static and dynamic models of the satellite. A Genetic Algorithm (GA) is applied to the design space for both single and multiobejective optimizations. The result of the multiobjective optimization is a Pareto-optimal based on two objectives, minimum satellite total mass and maximum payload mass budget. On the other hand, the application of the microsatellites is of interest for their less cost and response time. The high need for the remote sensing applications is a strong driver of their popularity in space missions. The satellite remote sensing missions are essential for long term research around the condition of the earth resources and environment. In remote sensing missions there are tight interrelations between different requirements such as orbital altitude, revisit time, mission cycle life and spatial resolution. Also, all of these requirements can affect the whole design characteristics. During the last years application of the CE in the space missions has demonstrated a great advantage to reach the optimum design base lines considering both the performance and the cost of the project. A well-known example of CE application is ESA (European Space Agency) CDF (Concurrent Design Facility). It is clear that for the university-class microsatellite projects having or developing such a facility seems beyond the project capabilities. Nevertheless practicing CE at any scale can be beneficiary for the university-class microsatellite projects. In the second part of this thesis, the main focus is on developing a MDO framework applicable to the conceptual design phase of the remote sensing microsatellites. This approach enables the design team to evaluate the interaction between the different system design variables. The presented MDO framework contains not only the system level variables such as the satellite total mass and total power, but also the mission requirements like the spatial resolution and the revisit time. The microsatellite sizing process is divided into the three major design disciplines; a) orbit design, b) payload sizing and c) bus sizing. First, different mission parameters for a practical range of sun-synchronous orbits (SS-Os) are calculated. Then, according to the orbital parameters and a reference remote sensing instrument, mass and power of the payload are calculated. Satellite bus sizing is done based on mass and power calculation of the different subsystems using design estimation relationships. In the satellite bus sizing, the power subsystem design is realized by considering more detailed design variables including a mission scenario and different types of solar cells and batteries. The mission scenario is selected in order to obtain a coverage belt on the earth surface parallel to the earth equatorial after each revisit time. In order to evaluate the interrelations between the different variables inside the design space all the mentioned design disciplines are combined in a unified code. The integrated satellite system sizing tool developed in this section is considered as an application of the CE to the conceptual design of the remote sensing microsatellite projects. Finally, in order to apply the MDO methodology to the design problem, a basic MDO framework is adjusted to the developed satellite system design tool. Design optimization is done by means of a GA single objective algorithm with the objective function as minimizing the microsatellite total mass. According to the results of MDO application, there exist different optimum design points all with the minimum satellite total mass but with different mission variables. This output demonstrates the successful applicability of MDO approach for system engineering trade-off studies at the conceptual design phase of the design in such projects. The main conclusion of this thesis is that the classical design approach for the satellite design which usually starts with the mission and payload definition is not necessarily the best approach for all of the satellite projects. The university-class microsatellite is an example for such projects. Due to this fact an integrated satellite sizing tool including different design disciplines focusing on the structural subsystem and considering unknown payload is developed. According to the results the satellite total mass and available mass for the unknown payload are conflictive objectives. In order to find the Pareto-optimal a multiobjective GA optimization is conducted. Based on the optimization results it is concluded that selecting the satellite total mass in the range of 40-60 kg can be considered as an optimum approach for a university-class microsatellite project with unknown payload(s). Also, the CE methodology is applied to the remote sensing microsatellites conceptual design process. The results of CE application provide a clear understanding of the interaction between satellite system design requirements such as satellite total mass and power and the satellite mission variables such as revisit time and spatial resolution. The MDO application is done with the total mass minimization of a remote sensing satellite. The results from the MDO application clarify the unclear relationship between different system and mission design variables as well as the optimum design base lines according to the selected objective during the initial design phases.
Resumo:
As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. The average consumption of a single data center is equivalent to the energy consumption of 25.000 households. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. This work proposes an automatic method, based on Multi-Objective Particle Swarm Optimization, for the identification of power models of enterprise servers in Cloud data centers. Our approach, as opposed to previous procedures, does not only consider the workload consolidation for deriving the power model, but also incorporates other non traditional factors like the static power consumption and its dependence with temperature. Our experimental results shows that we reach slightly better models than classical approaches, but simul- taneously simplifying the power model structure and thus the numbers of sensors needed, which is very promising for a short-term energy prediction. This work, validated with real Cloud applications, broadens the possibilities to derive efficient energy saving techniques for Cloud facilities.
Resumo:
El objetivo principal de esta tesis doctoral es profundizar en el análisis y diseño de un sistema inteligente para la predicción y control del acabado superficial en un proceso de fresado a alta velocidad, basado fundamentalmente en clasificadores Bayesianos, con el prop´osito de desarrollar una metodolog´ıa que facilite el diseño de este tipo de sistemas. El sistema, cuyo propósito es posibilitar la predicción y control de la rugosidad superficial, se compone de un modelo aprendido a partir de datos experimentales con redes Bayesianas, que ayudar´a a comprender los procesos dinámicos involucrados en el mecanizado y las interacciones entre las variables relevantes. Dado que las redes neuronales artificiales son modelos ampliamente utilizados en procesos de corte de materiales, también se incluye un modelo para fresado usándolas, donde se introdujo la geometría y la dureza del material como variables novedosas hasta ahora no estudiadas en este contexto. Por lo tanto, una importante contribución en esta tesis son estos dos modelos para la predicción de la rugosidad superficial, que se comparan con respecto a diferentes aspectos: la influencia de las nuevas variables, los indicadores de evaluación del desempeño, interpretabilidad. Uno de los principales problemas en la modelización con clasificadores Bayesianos es la comprensión de las enormes tablas de probabilidad a posteriori producidas. Introducimos un m´etodo de explicación que genera un conjunto de reglas obtenidas de árboles de decisión. Estos árboles son inducidos a partir de un conjunto de datos simulados generados de las probabilidades a posteriori de la variable clase, calculadas con la red Bayesiana aprendida a partir de un conjunto de datos de entrenamiento. Por último, contribuimos en el campo multiobjetivo en el caso de que algunos de los objetivos no se puedan cuantificar en números reales, sino como funciones en intervalo de valores. Esto ocurre a menudo en aplicaciones de aprendizaje automático, especialmente las basadas en clasificación supervisada. En concreto, se extienden las ideas de dominancia y frontera de Pareto a esta situación. Su aplicación a los estudios de predicción de la rugosidad superficial en el caso de maximizar al mismo tiempo la sensibilidad y la especificidad del clasificador inducido de la red Bayesiana, y no solo maximizar la tasa de clasificación correcta. Los intervalos de estos dos objetivos provienen de un m´etodo de estimación honesta de ambos objetivos, como e.g. validación cruzada en k rodajas o bootstrap.---ABSTRACT---The main objective of this PhD Thesis is to go more deeply into the analysis and design of an intelligent system for surface roughness prediction and control in the end-milling machining process, based fundamentally on Bayesian network classifiers, with the aim of developing a methodology that makes easier the design of this type of systems. The system, whose purpose is to make possible the surface roughness prediction and control, consists of a model learnt from experimental data with the aid of Bayesian networks, that will help to understand the dynamic processes involved in the machining and the interactions among the relevant variables. Since artificial neural networks are models widely used in material cutting proceses, we include also an end-milling model using them, where the geometry and hardness of the piecework are introduced as novel variables not studied so far within this context. Thus, an important contribution in this thesis is these two models for surface roughness prediction, that are then compared with respecto to different aspects: influence of the new variables, performance evaluation metrics, interpretability. One of the main problems with Bayesian classifier-based modelling is the understanding of the enormous posterior probabilitiy tables produced. We introduce an explanation method that generates a set of rules obtained from decision trees. Such trees are induced from a simulated data set generated from the posterior probabilities of the class variable, calculated with the Bayesian network learned from a training data set. Finally, we contribute in the multi-objective field in the case that some of the objectives cannot be quantified as real numbers but as interval-valued functions. This often occurs in machine learning applications, especially those based on supervised classification. Specifically, the dominance and Pareto front ideas are extended to this setting. Its application to the surface roughness prediction studies the case of maximizing simultaneously the sensitivity and specificity of the induced Bayesian network classifier, rather than only maximizing the correct classification rate. Intervals in these two objectives come from a honest estimation method of both objectives, like e.g. k-fold cross-validation or bootstrap.