975 resultados para Mathematical skills
Resumo:
The determination of performance standards and assessment practices in regard to student work placements is an essential and important task. Inappropriate, inadequate, or excessively complex assessment tasks can influence levels of student engagement and the quality of learning outcomes. Critical to determining appropriate standards and assessment tasks is an understanding and knowledge of key elements of the learning environment and the extent to which opportunities are provided for students to engage in critical reflection and judgement of their own performance in the contexts of the work environment. This paper focuses on the development of essential skills and knowledge (capabilities) that provide evidence of learning in work placements by describing an approach taken in the science and technology disciplines. Assessment matrices are presented to illustrate a method of assessment for use within the context of the learning environment centred on work placements in science and technology. This study contributes to the debate on the meaning of professional capability, performance standards and assessment practices in work placement programs by providing evidence of an approach that can be adapted by other programs to achieve similar benefits. The approach may also be valuable to other learning contexts where capability and performance are being judged in situations that are outside a controlled teaching and learning environment i.e. in other life-wide learning contexts.
Resumo:
Since 2004, the Australian Learning and Teaching Council (ALTC) and its predecessor, the Carrick Institute for Learning and Teaching in Higher Education, have funded numerous teaching and educational research-based projects in the Mathematical Sciences. In light of the Commonwealth Government’s decision to close the ALTC in 2011, it is appropriate to take account of the ALTCs input into the Mathe- matical Sciences in higher education. Here we present an overview of ALTC projects in the Mathematical Sciences, as well as report on the contributions they have made to the Discipline.
Resumo:
This article focuses on problem solving activities in a first grade classroom in a typical small community and school in Indiana. But, the teacher and the activities in this class were not at all typical of what goes on in most comparable classrooms; and, the issues that will be addressed are relevant and important for students from kindergarten through college. Can children really solve problems that involve concepts (or skills) that they have not yet been taught? Can children really create important mathematical concepts on their own – without a lot of guidance from teachers? What is the relationship between problem solving abilities and the mastery of skills that are widely regarded as being “prerequisites” to such tasks?Can primary school children (whose toolkits of skills are limited) engage productively in authentic simulations of “real life” problem solving situations? Can three-person teams of primary school children really work together collaboratively, and remain intensely engaged, on problem solving activities that require more than an hour to complete? Are the kinds of learning and problem solving experiences that are recommended (for example) in the USA’s Common Core State Curriculum Standards really representative of the kind that even young children encounter beyond school in the 21st century? … This article offers an existence proof showing why our answers to these questions are: Yes. Yes. Yes. Yes. Yes. Yes. And: No. … Even though the evidence we present is only intended to demonstrate what’s possible, not what’s likely to occur under any circumstances, there is no reason to expect that the things that our children accomplished could not be accomplished by average ability children in other schools and classrooms.
Resumo:
The majority of current first year university students belong to Generation Y. Consequently, research suggests that, in order to more effectively engage them, their particular learning preferences should be acknowledged in the organisation of their learning environments and in the support provided. These preferences are reflected in the Torts Student Peer Mentor Program, which, as part of the undergraduate law degree at the Queensland University of Technology, utilises active learning, structured sessions and teamwork to supplement student understanding of the substantive law of Torts with the development of life-long skills. This article outlines the Program, and its relevance to the learning styles and experiences of Generation Y first year law students transitioning to university, in order to investigate student perceptions of its effectiveness – both generally and, more specifically, in terms of the Program’s capacity to assist students to develop academic and work-related skills.
Resumo:
This paper provides a commentary on the contribution by Dr Chow who questioned whether the functions of learning are general across all categories of tasks or whether there are some task-particular aspects to the functions of learning in relation to task type. Specifically, they queried whether principles and practice for the acquisition of sport skills are different than what they are for musical, industrial, military and human factors skills. In this commentary we argue that ecological dynamics contains general principles of motor learning that can be instantiated in specific performance contexts to underpin learning design. In this proposal, we highlight the importance of conducting skill acquisition research in sport, rather than relying on empirical outcomes of research from a variety of different performance contexts. Here we discuss how task constraints of different performance contexts (sport, industry, military, music) provide different specific information sources that individuals use to couple their actions when performing and acquiring skills. We conclude by suggesting that his relationship between performance task constraints and learning processes might help explain the traditional emphasis on performance curves and performance outcomes to infer motor learning.
Resumo:
Russell, Benton and Kingsley (2010) recently suggested a new association football test comprising three different tasks for the evaluation of players' passing, dribbling and shooting skills. Their stated intention was to enhance ‘ecological validity’ of current association football skills tests allowing generalisation of results from the new protocols to performance constraints that were ‘representative’ of experiences during competitive game situations. However, in this comment we raise some concerns with their use of the term ‘ecological validity’ to allude to aspects of ‘representative task design’. We propose that in their paper the authors confused understanding of environmental properties, performance achievement and generalisability of the test and its outcomes. Here, we argue that the tests designed by Russell and colleagues did not include critical sources of environmental information, such as the active role of opponents, which players typically use to organise their actions during performance. Static tasks which are not representative of the competitive performance environment may lead to different emerging patterns of movement organisation and performance outcomes, failing to effectively evaluate skills performance in sport.
Resumo:
The well-known difficulties students exhibit when learning to program are often characterised as either difficulties in understanding the problem to be solved or difficulties in devising and coding a computational solution. It would therefore be helpful to understand which of these gives students the greatest trouble. Unit testing is a mainstay of large-scale software development and maintenance. A unit test suite serves not only for acceptance testing, but is also a form of requirements specification, as exemplified by agile programming methodologies in which the tests are developed before the corresponding program code. In order to better understand students’ conceptual difficulties with programming, we conducted a series of experiments in which students were required to write both unit tests and program code for non-trivial problems. Their code and tests were then assessed separately for correctness and ‘coverage’, respectively. The results allowed us to directly compare students’ abilities to characterise a computational problem, as a unit test suite, and develop a corresponding solution, as executable code. Since understanding a problem is a pre-requisite to solving it, we expected students’ unit testing skills to be a strong predictor of their ability to successfully implement the corresponding program. Instead, however, we found that students’testing abilities lag well behind their coding skills.
Resumo:
Effective Wayfinding is the successful interplay of human and environmental factors resulting in a person successfully moving from their current position to a desired location in a timely manner. To date this process has not been modelled to reflect this interplay. This paper proposes a complex modelling system approach of wayfinding by using Bayesian Networks to model this process, and applies the model to airports. The model suggests that human factors have a greater impact on effective wayfinding in airports than environmental factors. The greatest influences on human factors are found to be the level of spatial anxiety experienced by travellers and their cognitive and spatial skills. The model also predicted that the navigation pathway that a traveller must traverse has a larger impact on the effectiveness of an airport’s environment in promoting effective wayfinding than the terminal design.
Resumo:
A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider the numerical simulation of a fractional mathematical model of epidermal wound healing (FMM-EWH), which is based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in the advection and diffusion terms belong to the intervals (0, 1) or (1, 2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of Riemann-Liouville and Grünwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
This paper focuses on very young students' ability to engage in repeating pattern tasks and identifying strategies that assist them to ascertain the structure of the pattern. It describes results of a study which is part of the Early Years Generalising Project (EYGP) and involves Australian students in Years 1 to 4 (ages 5-10). This paper reports on the results from the early years' cohort (Year 1 and 2 students). Clinical interviews were used to collect data concerning students' ability to determine elements in different positions when two units of a repeating pattern were shown. This meant that students were required to identify the multiplicative structure of the pattern. Results indicate there are particular strategies that assist students to predict these elements, and there appears to be a hierarchy of pattern activities that help students to understand the structure of repeating patterns.
Resumo:
Completing a PhD on time is a complex process, influenced by many interacting factors. In this paper we take a Bayesian Network approach to analyzing the factors perceived to be important in achieving this aim. Focusing on a single research group in Mathematical Sciences, we develop a conceptual model to describe the factors considered to be important to students and then quantify the network based on five individual perspectives: the students, a supervisor and a university research students centre manager. The resultant network comprised 37 factors and 40 connections, with an overall probability of timely completion of between 0.6 and 0.8. Across all participants, the four factors that were considered to most directly influence timely completion were personal aspects, the research environment, the research project, and incoming skills.
Resumo:
Controlled drug delivery is a key topic in modern pharmacotherapy, where controlled drug delivery devices are required to prolong the period of release, maintain a constant release rate, or release the drug with a predetermined release profile. In the pharmaceutical industry, the development process of a controlled drug delivery device may be facilitated enormously by the mathematical modelling of drug release mechanisms, directly decreasing the number of necessary experiments. Such mathematical modelling is difficult because several mechanisms are involved during the drug release process. The main drug release mechanisms of a controlled release device are based on the device’s physiochemical properties, and include diffusion, swelling and erosion. In this thesis, four controlled drug delivery models are investigated. These four models selectively involve the solvent penetration into the polymeric device, the swelling of the polymer, the polymer erosion and the drug diffusion out of the device but all share two common key features. The first is that the solvent penetration into the polymer causes the transition of the polymer from a glassy state into a rubbery state. The interface between the two states of the polymer is modelled as a moving boundary and the speed of this interface is governed by a kinetic law. The second feature is that drug diffusion only happens in the rubbery region of the polymer, with a nonlinear diffusion coefficient which is dependent on the concentration of solvent. These models are analysed by using both formal asymptotics and numerical computation, where front-fixing methods and the method of lines with finite difference approximations are used to solve these models numerically. This numerical scheme is conservative, accurate and easily implemented to the moving boundary problems and is thoroughly explained in Section 3.2. From the small time asymptotic analysis in Sections 5.3.1, 6.3.1 and 7.2.1, these models exhibit the non-Fickian behaviour referred to as Case II diffusion, and an initial constant rate of drug release which is appealing to the pharmaceutical industry because this indicates zeroorder release. The numerical results of the models qualitatively confirms the experimental behaviour identified in the literature. The knowledge obtained from investigating these models can help to develop more complex multi-layered drug delivery devices in order to achieve sophisticated drug release profiles. A multi-layer matrix tablet, which consists of a number of polymer layers designed to provide sustainable and constant drug release or bimodal drug release, is also discussed in this research. The moving boundary problem describing the solvent penetration into the polymer also arises in melting and freezing problems which have been modelled as the classical onephase Stefan problem. The classical one-phase Stefan problem has unrealistic singularities existed in the problem at the complete melting time. Hence we investigate the effect of including the kinetic undercooling to the melting problem and this problem is called the one-phase Stefan problem with kinetic undercooling. Interestingly we discover the unrealistic singularities existed in the classical one-phase Stefan problem at the complete melting time are regularised and also find out the small time behaviour of the one-phase Stefan problem with kinetic undercooling is different to the classical one-phase Stefan problem from the small time asymptotic analysis in Section 3.3. In the case of melting very small particles, it is known that surface tension effects are important. The effect of including the surface tension to the melting problem for nanoparticles (no kinetic undercooling) has been investigated in the past, however the one-phase Stefan problem with surface tension exhibits finite-time blow-up. Therefore we investigate the effect of including both the surface tension and kinetic undercooling to the melting problem for nanoparticles and find out the the solution continues to exist until complete melting. The investigation of including kinetic undercooling and surface tension to the melting problems reveals more insight into the regularisations of unphysical singularities in the classical one-phase Stefan problem. This investigation gives a better understanding of melting a particle, and contributes to the current body of knowledge related to melting and freezing due to heat conduction.
Resumo:
Extending recent research on the importance of specific resources and skills for the internationalization of start-ups, this article tests a negative binomial model on a sample of 520 recently created high technology firms from the UK and Germany. The results show that previous international experience of entrepreneurs facilitates the rapid penetration of foreign markets, especially when the company features a clear and deliberate strategic intent of internationalization from the outset. This research provides one of the first empirical studies linking the influence of entrepreneurial teams to a high probability of success in the internationalization of high-technology ventures.
Resumo:
Applying Lazear's jack-of-all-trades theory, we investigate the formation of entrepreneurial skills in two data sets on innovative new firms. Our results suggest that traditional human capital indicators individually have little or no influence on entrepreneurial skills. However, consistent with Lazear's theory, those entrepreneurs who exhibit a varied set of work experience have higher entrepreneurial skills relevant for starting and growing a firm. This supports the notion that a varied set of work experiences rather than depth of any particular type of experience or education is important for the development of entrepreneurial skills.
Resumo:
LiFePO4 is a commercially available battery material with good theoretical discharge capacity, excellent cycle life and increased safety compared with competing Li-ion chemistries. It has been the focus of considerable experimental and theoretical scrutiny in the past decade, resulting in LiFePO4 cathodes that perform well at high discharge rates. This scrutiny has raised several questions about the behaviour of LiFePO4 material during charge and discharge. In contrast to many other battery chemistries that intercalate homogeneously, LiFePO4 can phase-separate into highly and lowly lithiated phases, with intercalation proceeding by advancing an interface between these two phases. The main objective of this thesis is to construct mathematical models of LiFePO4 cathodes that can be validated against experimental discharge curves. This is in an attempt to understand some of the multi-scale dynamics of LiFePO4 cathodes that can be difficult to determine experimentally. The first section of this thesis constructs a three-scale mathematical model of LiFePO4 cathodes that uses a simple Stefan problem (which has been used previously in the literature) to describe the assumed phase-change. LiFePO4 crystals have been observed agglomerating in cathodes to form a porous collection of crystals and this morphology motivates the use of three size-scales in the model. The multi-scale model developed validates well against experimental data and this validated model is then used to examine the role of manufacturing parameters (including the agglomerate radius) on battery performance. The remainder of the thesis is concerned with investigating phase-field models as a replacement for the aforementioned Stefan problem. Phase-field models have recently been used in LiFePO4 and are a far more accurate representation of experimentally observed crystal-scale behaviour. They are based around the Cahn-Hilliard-reaction (CHR) IBVP, a fourth-order PDE with electrochemical (flux) boundary conditions that is very stiff and possesses multiple time and space scales. Numerical solutions to the CHR IBVP can be difficult to compute and hence a least-squares based Finite Volume Method (FVM) is developed for discretising both the full CHR IBVP and the more traditional Cahn-Hilliard IBVP. Phase-field models are subject to two main physicality constraints and the numerical scheme presented performs well under these constraints. This least-squares based FVM is then used to simulate the discharge of individual crystals of LiFePO4 in two dimensions. This discharge is subject to isotropic Li+ diffusion, based on experimental evidence that suggests the normally orthotropic transport of Li+ in LiFePO4 may become more isotropic in the presence of lattice defects. Numerical investigation shows that two-dimensional Li+ transport results in crystals that phase-separate, even at very high discharge rates. This is very different from results shown in the literature, where phase-separation in LiFePO4 crystals is suppressed during discharge with orthotropic Li+ transport. Finally, the three-scale cathodic model used at the beginning of the thesis is modified to simulate modern, high-rate LiFePO4 cathodes. High-rate cathodes typically do not contain (large) agglomerates and therefore a two-scale model is developed. The Stefan problem used previously is also replaced with the phase-field models examined in earlier chapters. The results from this model are then compared with experimental data and fit poorly, though a significant parameter regime could not be investigated numerically. Many-particle effects however, are evident in the simulated discharges, which match the conclusions of recent literature. These effects result in crystals that are subject to local currents very different from the discharge rate applied to the cathode, which impacts the phase-separating behaviour of the crystals and raises questions about the validity of using cathodic-scale experimental measurements in order to determine crystal-scale behaviour.