979 resultados para Matematica - Formulas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the market practice for interest rate yield curves construction and pricing interest rate derivatives. Then we give a brief description of the Vasicek and the Hull-White models, with an example of calibration to market data. We generalize the classical Black-Scholes-Merton pricing formulas, considering more general cases such as perfect or partial collateral, derivatives on a dividend paying asset subject to repo funding, and multiple currencies. Finally we derive generic pricing formulae for different combinations of cash flow and collateral currencies, and we apply the results to the pricing of FX swaps and CCS, and we discuss curve bootstrapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta presentación describe algunos aspectos que deben considerarse al diseñar planes encaminados a mejorar la enseñanza y el aprendizaje de la ciencia, la matemática y la tecnología de una población. La pregunta fundamental que intento atacar es: ¿cual es la relación entre contenidos científicos, matemáticos y tecnológicos que deben ser generados para educación general y su aprendizaje? Se discute el papel de la investigación en didáctica de la ciencia y la tecnología así como en Matemática Educativa que puede iluminar la formación de planes de esta naturaleza. Se sugiere la construcción de planes pilotos que sirvan para recolectar información acerca de las condiciones en las cuales los estudiantes aprenden ideas importantes de ciencia, matemática y tecnología. Se utilizan datos empíricos provenientes de proyectos pilotos de Latinoamérica (Cajas, 1999b).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questo lavoro nasce dal desiderio di approfondire i fondamenti del linguaggio della matematica, osservandone gli usi ed analizzandone gli scopi dal punto di vista didattico e non solo. Il linguaggio è il mezzo su cui si costruiscono i pensieri o semplicemente lo strumento coi quali si comunica il sapere? Il linguaggio è uno strumento della pratica matematica o è la matematica ad essere un linguaggio? Se lo è, che caratteristiche ha? Queste sono le domande che hanno accompagnato la stesura dei primi capitoli di questa tesi, in cui si approfondisce il tema del linguaggio della matematica da un punto di vista epistemologico, tecnico e didattico, a partire dai riferimenti teorici e dalle ricerche sul campo curate da Bruno D’Amore e Pier Luigi Ferrari. Nella seconda parte si presentano i risultati e le osservazioni della sperimentazione condotta nella classe 5a As del Liceo Scientifico “A. Righi” di Cesena. L’indagine di tipo qualitativo sui protocolli degli studenti ha permesso di definire le modalità d’uso del linguaggio da parte degli stessi al termine del percorso scolastico, di mostrare alcuni possibili legami tra le competenze linguistiche e quelle matematiche e di delineare una classificazione di tre profili di allievi relativamente al loro modo di scrivere e parlare di matematica. La tesi ha favorito uno sguardo trasversale verso la matematica in cui il linguaggio offre una fruttuosa possibilità di incontro tra prospettive opposte nel guardare la scienza e l’uomo. Questo apre alla possibilità di costruire una didattica che non sia la mera somma di conoscenze o la divisione di settori disciplinari, ma il prodotto di elementi che armoniosamente costruiscono il pensiero dell’uomo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questa tesi ha lo scopo di descrivere le proprietà matematiche degli insiemi frattali. Nell'introduzione è spiegato brevemente cosa sono i frattali e vengono fatti alcuni esempi di frattali in natura, per poi passare agli aspetti più matematici nei capitoli. Nel capitolo uno si parla della misura e della dimensione di Hausdorff e viene calcolata, seguendo la definizione, per l'insieme di Cantor. Poi nel secondo capitolo viene descrittà l'autosimilarità e viene enunciato un importante teorema che lega l'autosimilarità e la dimensione di Hausdorff. Nel terzo capitolo vengono descritti degli insiemi frattali molto importanti: quelli di Mandelbrot e di Julia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il primo capitolo verte su argomenti di musica e, dopo una breve premessa generale, ed alcuni cenni biografici di J. S. Bach, si passa ad una analisi strutturale di tipo aritmetico e geometrico su alcune sue famose composizioni, sottolineando in particolare la passione del grande compositore per la numerologia, esaminando l’importanza che il fattore numerologico sempre assume nelle sue opere. Il secondo capitolo verte su argomenti di matematica e tratta alcuni importanti aspetti della teoria dei grafi, del toro e dell’immersione di grafi in superfici. Il terzo capitolo, nel quale si fa riferimento agli argomenti dei primi due capitoli, è diviso in tre parti: la prima esamina alcuni principali fondamenti matematico-musicali, la seconda propone un excursus storico dalla scala pitagorica al temperamento equabile, la terza approfondisce il ciclo delle quinte, il Tonnetz e le teorie neo-riemanniane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis mainly concerns the study of intrinsically regular submanifolds of low codimension in the Heisenberg group H^n, called H-regular surfaces of low codimension, from the point of view of geometric measure theory. We consider an H-regular surface of H^n of codimension k, with k between 1 and n, parametrized by a uniformly intrinsically differentiable map acting between two homogeneous complementary subgroups of H^n, with target subgroup horizontal of dimension k. In particular the considered submanifold is the intrinsic graph of the parametrization. We extend various results of Ambrosio, Serra Cassano and Vittone, available for the case when k = 1. We prove that the uniform intrinsic differentiability of the parametrizing map is equivalent to the existence and continuity of its intrinsic differential, to the local existence of a suitable approximating family of Euclidean regular maps, and, when the domain and the codomain of the map are orthogonal, to the existence and continuity of suitably defined intrinsic partial derivatives of the function. Successively, we present a series of area formulas, proved in collaboration with V. Magnani. They allow to compute the (2n+2−k)-dimensional spherical Hausdorff measure and the (2n+2−k)-dimensional centered Hausdorff measure of the parametrized H-regular surface, with respect to any homogeneous distance fixed on H^n. Furthermore, we focus on (G,M)-regular sets of G, where G and M are two arbitrary Carnot groups. Suitable implicit function theorems ensure the local existence of an intrinsic parametrization of such a set, at any of its points. We prove that it is uniformly intrinsically differentiable. Finally, we prove a coarea-type inequality for a continuously Pansu differentiable function acting between two Carnot groups endowed with homogeneous distances. We assume that the level sets of the function are uniformly lower Ahlfors regular and that the Pansu differential is everywhere surjective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work revolves around potential theory in metric spaces, focusing on applications of dyadic potential theory to general problems associated to functional analysis and harmonic analysis. In the first part of this work we consider the weighted dual dyadic Hardy's inequality over dyadic trees and we use the Bellman function method to characterize the weights for which the inequality holds, and find the optimal constant for which our statement holds. We also show that our Bellman function is the solution to a stochastic optimal control problem. In the second part of this work we consider the problem of quasi-additivity formulas for the Riesz capacity in metric spaces and we prove formulas of quasi-additivity in the setting of the tree boundaries and in the setting of Ahlfors-regular spaces. We also consider a proper Harmonic extension to one additional variable of Riesz potentials of functions on a compact Ahlfors-regular space and we use our quasi-additivity formula to prove a result of tangential convergence of the harmonic extension of the Riesz potential up to an exceptional set of null measure

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we explore the combinatorial properties of several polynomials arising in matroid theory. Our main motivation comes from the problem of computing them in an efficient way and from a collection of conjectures, mainly the real-rootedness and the monotonicity of their coefficients with respect to weak maps. Most of these polynomials can be interpreted as Hilbert--Poincaré series of graded vector spaces associated to a matroid and thus some combinatorial properties can be inferred via combinatorial algebraic geometry (non-negativity, palindromicity, unimodality); one of our goals is also to provide purely combinatorial interpretations of these properties, for example by redefining these polynomials as poset invariants (via the incidence algebra of the lattice of flats); moreover, by exploiting the bases polytopes and the valuativity of these invariants with respect to matroid decompositions, we are able to produce efficient closed formulas for every paving matroid, a class that is conjectured to be predominant among all matroids. One last goal is to extend part of our results to a higher categorical level, by proving analogous results on the original graded vector spaces via abelian categorification or on equivariant versions of these polynomials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Cosa ci fa un matematico in una casa editrice?" è la comprensibile domanda che mi è stata fatta quasi ogni volta che ho raccontato la mia esperienza di tirocinio presso la Edizioni Dedalo. L'oggetto del presente elaborato è rispondere a questa domanda, un pretesto per poter presentare la comunicazione della matematica a tutto tondo. Oltre a descrivere in cosa è consistito il tirocinio, viene presentato un breve excursus sulla nascita della comunicazione scientifica, al fine di capirne l'importanza da una parte per la democratizzazione del sapere, dall'altra per lo sviluppo della scienza stessa, due aspetti fortemente interdipendenti, esaminando esempi storici da cui si evince tanto il peso della presenza quanto quello dell'assenza di una buona comunicazione. Viene analizzata la teoria per cui il salto qualitativo per la produzione scientifica avviene non a caso all'indomani dell'invenzione della stampa a caratteri mobili. Vengono forniti elementi di teoria della comunicazione, sottolineandone le differenze e i punti di contatto con la didattica, con l'aiuto di interviste a protagonisti della divulgazione e della comunicazione scientifica come Anna Cerasoli, Roberta Fulci, Eleonora Pellegrini e Paolo Zellini.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La struttura di questo progetto di tesi vuole ripercorrere le tappe della storia della cartografia del Rinascimento: prima, vestendo i panni del cartografo rinascimentale, usufruendo delle sue conoscenze legate alla praticità, e, successivamente, attraverso la lente del matematico dell’Ottocento. Questo testo tratterà solamente le cartografie che rappresentano il globo intero. In particolare, si analizzerà la mappa di Mercatore e la mappa di Waldseemüller, di cui si approfondirà anche la costruzione tramite riga e compasso.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

“Probabilità e gioco d’azzardo” è un progetto didattico interdisciplinare tra Matematica ed Educazione Civica elaborato per le classi seconde del Liceo Scientifico. Si introduce il concetto di probabilità per indagare le criticità legate al gioco d’azzardo e per capire come alcuni preconcetti e intuizioni relativi alla probabilità possano influenzarne l’analisi e la comprensione. Nel lavoro di tesi la dimensione teorica non è solo utile alla comprensione dell’aspetto pratico, ma ha un ruolo a sé stante e multidisciplinare: si ripercorre la storia dell’evoluzione della probabilità dalle origini alle moderne interpretazioni. L’analisi del concetto di equità nel SuperEnalotto e nella Roulette caratterizza la dimensione pratica dell’attività. L’apprendimento concettuale non ha un ruolo centrale: l’obiettivo del progetto è fornire agli studenti strumenti per imparare a ragionare, riflettere, mettere in discussione, argomentare e controbattere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La financial literacy viene definita dall’Ocse come il processo per mezzo del quale i cittadini migliorano la loro comprensione su prodotti finanziari, i concetti ad essi correlati e i rischi associati e, attraverso l’informazione, l’istruzione e consigli oggettivi, sviluppano le capacità e la fiducia nella propria consapevolezza dei rischi e delle opportunità finanziarie, di sapere dove chiedere aiuto, e intraprendere altre azioni efficaci per migliorare il proprio benessere economico. Attraverso una contestualizzazione sociale, scolastica e metodologica, il lavoro di tesi si propone di indagare i livelli di financial literacy tra gli studenti di quattro classi superiori di diverso grado. Una prima indagine avviene attraverso un pre-test sulle conoscenze finanziarie, cultura e rapporto affettivo con il mondo finanziario. Successivamente viene proposto un percorso composto da tre attività originali riguardanti il “gioco in borsa”, la pianificazione e il futuro, e le leggi finanziarie. Si analizzano: l’applicazione di conoscenze matematiche, i ragionamenti e gli atteggiamenti degli studenti nelle quattro classi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nel modo in cui oggigiorno viene intrapresa la ricerca, l’interdisciplinarità assume una posizione di sempre maggior rilievo in pressoché ogni ambito del sapere. Questo è particolarmente evidente nel campo delle discipline STEM (Scienza, Tecnologia, Ingegneria, Matematica), considerando che i problemi a cui esse fanno fronte (si pensi agli studi sul cambiamento climatico o agli avanzamenti nel campo dell’intelligenza artificiale) richiedono la collaborazione ed integrazione di discipline diverse. Anche nella ricerca educativa, l’interdisciplinarità ha acquisito negli ultimi anni una notevole rilevanza ed è stata oggetto di riflessioni teoriche e di valutazioni sulle pratiche didattiche. Nell’ampio contesto di questo dibattito, questa tesi si focalizza sull’analisi dell’interdisciplinarità tra fisica e matematica, ma ancora più nel dettaglio sul ruolo che la matematica ha nei modelli fisici. L’aspetto che si vuole sottolineare è l’esigenza di superare una concezione banale e semplicistica, sebbene diffusa, per la quale la matematica avrebbe una funzione strumentale rispetto alla fisica, a favore invece di una riflessione che metta in luce il ruolo strutturale della formalizzazione matematica per l’avanzamento della conoscenza in fisica. Per fare ciò, si prende in esame il caso di studio dell’oscillatore armonico attraverso due lenti diverse che mettono in luce altrettanti temi. La prima, quella dell’anchor equation, aiuterà a cogliere gli aspetti fondamentali del ruolo strutturale della matematica nella modellizzazione dell’oscillatore armonico. La seconda, quella degli epistemic games, verrà utilizzata per indagare materiale didattico, libri di testo e tutorial, per comprendere come diverse tipologie di risorse possano condurre gli studenti ad intendere in modi diversi la relazione di interdisciplinarità tra fisica e matematica in questo contesto.