858 resultados para Lean principles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We highlight the need for a comprehensive, multi-disciplinary approach for the development of cost-effective water remediation methods. Combining ``chimie douce'' and green chemical principles seems essential for making these technologies economically viable and socially relevant (especially in the developing world). A comprehensive approach to water remediation will take into account issues such as nanotoxicity, chemical yield, cost, and ease of deployment in reactors. By considering technological challenges that lie ahead, we will attempt to identify directions that are likely to make photocatalytic water remediation a more global technology than it currently is. (C) 2013 Elsevier Ltd. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sialic acids form a large family of 9-carbon monosaccharides and are integral components of glycoconjugates. They are known to bind to a wide range of receptors belonging to diverse sequence families and fold classes and are key mediators in a plethora of cellular processes. Thus, it is of great interest to understand the features that give rise to such a recognition capability. Structural analyses using a non-redundant data set of known sialic acid binding proteins was carried out, which included exhaustive binding site comparisons and site alignments using in-house algorithms, followed by clustering and tree computation, which has led to derivation of sialic acid recognition principles. Although the proteins in the data set belong to several sequence and structure families, their binding sites could be grouped into only six types. Structural comparison of the binding sites indicates that all sites contain one or more different combinations of key structural features over a common scaffold. The six binding site types thus serve as structural motifs for recognizing sialic acid. Scanning the motifs against a non-redundant set of binding sites from PDB indicated the motifs to be specific for sialic acid recognition. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. As an example analysis, a genome-wide scan for the motifs in structures of Mycobacterium tuberculosis proteome identified 17 hits that contain combinations of the features, suggesting a possible function of sialic acid binding by these proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform first-principles calculations of the quasiparticle defect states, charge transition levels, and formation energies of oxygen vacancies in rutile titanium dioxide. The calculations are done within the recently developed combined DFT + GW formalism, including the necessary electrostatic corrections for the supercells with charged defects. We find the oxygen vacancy to be a negative U defect, where U is the defect electron addition energy. For Fermi level values below similar to 2.8 eV (relative to the valence-band maximum), we find the +2 charge state of the vacancy to be the most stable, while above 2.8 eV we find that the neutral charge state is the most stable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroxyapatite (HAp), a primary constituent of human bone, is usually nonstoichiometric with varying Ca/P molar ratios, with the well-known fact that Ca deficiency can cause marked reductions in its mechanical properties. To gain insights into the mechanism of this degradation, we employ first-principles calculations based on density functional theory and determine the effects of Ca deficiency on structure, vibrational, and elastic properties of HAp. Our simulation results confirm a considerable reduction in the elastic constants of HAp due to Ca deficiency, which was experimentally reported earlier. Stress-induced transformation of the Ca-deficient defected structure into a metastable state upon the application of stress could be a reason for this. Local structural stability of HAp and Ca-deficient HAp structures is assessed with full phonon dispersion studies. Further, specific signatures in the computed vibrational spectra for Ca deficiency in HAp can be utilized in experimental characterization of different types of defected HAp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along 1 (1) over bar 0] and 1 (2) over bar 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF1 (2) over bar 1]) in Cu reveals structural instabilities, indicating that the energy barrier (gamma(usf)) along the (1 1 1)1 (2) over bar 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead telluride (PbTe) is an established thermoelectric material which can be alloyed with sulphur and selenium to further enhance the thermoelectric properties. Here, a first principles study of ternary alloys PbSxTe(1-x) and PbSexTe(1-x) (0 <= x <= 1) based on the Virtual Crystal Approximation (VCA) is presented for different ratios of the isoelectronic atoms in each series. Equilibrium lattice parameters and elastic constants have been calculated and compared with the reported data. Anisotropy parameter calculated from the stiffness constants showed a slight improvement in anisotropy of elastic properties of the alloys over undoped PbTe. Furthermore, the alloys satisfied the predicted stability criteria from the elastic constants, showing stable structures, which agreed with the previously reported experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomically thin layered black phosphorous (BP) has recently appeared as an alternative to the transitional metal dichalcogenides for future channel material in a metal-oxide-semiconductor transistor due to its lower carrier effective mass. Investigation of the electronic property of source/drain contact involving metal and two-dimensional material is essential as it impacts the transistor performance. In this paper, we perform a systematic and rigorous study to evaluate the Ohmic nature of the side-contact formed by the monolayer BP (mBP) and metals (gold, titanium, and palladium), which are commonly used in experiments. Employing the Density Functional Theory, we analyse the potential barrier, charge transfer and atomic orbital overlap at the metal-mBP interface in an optimized structure to understand how efficiently carriers could be injected from metal contact to the mBP channel. Our analysis shows that gold forms a Schottky contact with a higher tunnel barrier at the interface in comparison to the titanium and palladium. mBP contact with palladium is found to be purely Ohmic, where as titanium contact demonstrates an intermediate behaviour. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of parameter estimation of an ellipse from a limited number of samples. We develop a new approach for solving the ellipse fitting problem by showing that the x and y coordinate functions of an ellipse are finite-rate-of-innovation (FRI) signals. Uniform samples of x and y coordinate functions of the ellipse are modeled as a sum of weighted complex exponentials, for which we propose an efficient annihilating filter technique to estimate the ellipse parameters from the samples. The FRI framework allows for estimating the ellipse parameters reliably from partial or incomplete measurements even in the presence of noise. The efficiency and robustness of the proposed method is compared with state-of-art direct method. The experimental results show that the estimated parameters have lesser bias compared with the direct method and the estimation error is reduced by 5-10 dB relative to the direct method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First-principles density functional theory has been used to evaluate the shear and cleavage strength in terms of Griffith work and generalized stacking fault energy (GSF) of (001) plane for gamma, gamma' and gamma-gamma' system as a function of distance from the gamma/gamma' interface. Calculation of Griffith work suggests higher cleavage energy for bulk gamma as compared to gamma' while the GSF calculation suggests higher shear strength for bulk gamma' as compared to gamma. It has been found that the shear strength of the cubic plane of the gamma/gamma' interface is marginally lower than those of bulk gamma and gamma' phases. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rich data bearing on the structural and evolutionary principles of protein protein interactions are paving the way to a better understanding of the regulation of function in the cell. This is particularly the case when these interactions are considered in the framework of key pathways. Knowledge of the interactions may provide insights into the mechanisms of crucial `driver' mutations in oncogenesis. They also provide the foundation toward the design of protein protein interfaces and inhibitors that can abrogate their formation or enhance them. The main features to learn from known 3-D structures of protein protein complexes and the extensive literature which analyzes them computationally and experimentally include the interaction details which permit undertaking structure-based drug discovery, the evolution of complexes and their interactions, the consequences of alterations such as post-translational modifications, ligand binding, disease causing mutations, host pathogen interactions, oligomerization, aggregation and the roles of disorder, dynamics, allostery and more to the protein and the cell. This review highlights some of the recent advances in these areas, including design, inhibition and prediction of protein protein complexes. The field is broad, and much work has been carried out in these areas, making it challenging to cover it in its entirety. Much of this is due to the fast increase in the number of molecules whose structures have been determined experimentally and the vast increase in computational power. Here we provide a concise overview. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A first-principles study was carried out to investigate the stability of the crystal structure of beta-form belite (beta-C2S) substituted by Sr atoms as trace impurities for Ca atoms in CaOx polyhedra. The effect of the connection types of CaOx polyhedral, in the form of common-edge bond and common-face bond, upon the crystal stability is described. The Ca-Ca interatomic distance closely relates to the hydraulic activity of beta-C2S. The beta-C2S substituted by an Sr atom for Ca(1) atoms having seven Ca-O bonds is energetically more stable than that substituted by an Sr atom for Ca(2) atoms having eight Ca-O bonds. The Sr-doped beta-C2S having a common face bond with SrOx polyhedra is energetically more favorable and results in structural stability compared with that having a common edge bond with SrOx polyhedra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of oxygen vacancies on the elastic properties of zinc oxide (ZnO) is examined using first-principles calculations based on density functional theory. Formation energies of vacancies in different types of oxygen deficient structures were analyzed to ascertain their stability. This analysis reveals that the doubly-charged oxygen vacancy under zinc-rich growth conditions is the most stable. Results show considerable degradation of some of the elastic moduli due to the presence of oxygen vacancies, which is in agreement with recent experiments. The decrease observed in elastic constants is more pronounced with increase in vacancy concentration. Further, the charge state of the defect structure was found to influence the shear elastic constants. Evaluation of elastic anisotropy of stoichiometric and oxygen deficient ZnO indicates the significant anisotropy in elastic properties and stiff c-axis orientation. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the discovery 1] of gamma' precipitate (L1(2) - Co-3 (Al, W)) in the Co-Al-W ternary system, there has been an increased interest in Co-based superalloys. Since these alloys have two phase microstructures (gamma + gamma') similar to Ni-based superalloys 2], they are viable candidates in high temperature applications, particularly in land-based turbines. The role of alloying on stability of the gamma' phase has been an active area of research. In this study, electronic structure calculations were done to probe the effect of alloying in Co3W with L1(2) structure. Compositions of type Co-3(W, X), (where X/Y = Mn, Fe, Ni, Pt, Cr, Al, Si, V, W, Ta, Ti, Nb, Hf, Zr and Mo) were studied. Effect of alloying on equilibrium lattice parameters and ground state energies was used to calculate Vegard's coefficients and site preference related data. The effect of alloying on the stability of the L1(2) structure vis a vis other geometrically close packed ordered structures was also studied for a range of Co3X compounds. Results suggest that the penchant of element for the W sublattice can be predicted by comparing heats of formation of Co3X in different structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Availability of producer gas engines at MW being limited necessitates to adapt engine from natural gas operation. The present work focus on the development of necessary kit for adapting a 12 cylinder lean burn turbo-charged natural gas engine rated at 900 kWe (Waukesha make VHP5904LTD) to operate on producer and set up an appropriate capacity biomass gasification system for grid linked power generation in Thailand. The overall plant configuration had fuel processing, drying, reactor, cooling and cleaning system, water treatment, engine generator and power evacuation. The overall project is designed for evacuation of 1.5 MWe power to the state grid and had 2 gasification system with the above configuration and 3 engines. Two gasification system each designed for about 1100 kg/hr of woody biomass was connected to the engine using a producer gas carburetor for the necessary Air to fuel ratio control. In the use of PG to fuel IC engines, it has been recognized that the engine response will differ as compared to the response with conventional fueled operation due to the differences in the thermo-physical properties of PG. On fuelling a conventional engine with PG, power de-rating can be expected due to the lower calorific value (LCV), lower adiabatic flame temperature (AFT) and the lower than unity product to reactant more ratio. Further the A/F ratio for producer gas is about 1/10th that of natural gas and requires a different carburetor for engine operation. The research involved in developing a carburetor for varying load conditions. The patented carburetor is based on area ratio control, consisting of a zero pressure regulator and a separate gas and air line along with a mixing zone. The 95 litre engine at 1000 rpm has an electrical efficiency of 33.5 % with a heat input of 2.62 MW. Each engine had two carburetors designed for producer gas flow each capable of handling about 1200 m3/hr in order to provide similar engine heat input at a lower conversion efficiency. Cold flow studies simulating the engine carburetion system results showed that the A/F was maintained in the range of 1.3 +/- 0.1 over the entire flow range. Initially, the gasification system was tested using woody biomass and the gas composition was found to be CO 15 +/- 1.5 % H-2 22 +/- 2% CH4 2.2 +/- 0.5 CO2 11.25 +/- 1.4 % and rest N-2, with the calorific value in the range of 5.0 MJ/kg. After initial trials on the engine to fine tune the control system and adjust various engine operating parameter a peak load of 800 kWe was achieved, while a stable operating conditions was found to be at 750 kWe which is nearly 85 % of the natural gas rating. The specific fuel consumption was found to be 0.9 kg of biomass per kWh.