976 resultados para Interaction Man-Computer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origin of the catalytic power of enzymes is discussed, paying attention to evolutionary constraints. It is pointed out that enzyme catalysis reflects energy contributions that cannot be determined uniquely by current experimental approaches without augmenting the analysis by computer simulation studies. The use of energy considerations and computer simulations allows one to exclude many of the popular proposals for the way enzymes work. It appears that the standard approaches used by organic chemists to catalyze reactions in solutions are not used by enzymes. This point is illustrated by considering the desolvation hypothesis and showing that it cannot account for a large increase in kcat relative to the corresponding kcage for the reference reaction in a solvent cage. The problems associated with other frequently invoked mechanisms also are outlined. Furthermore, it is pointed out that mutation studies are inconsistent with ground state destabilization mechanisms. After considering factors that were not optimized by evolution, we review computer simulation studies that reproduced the overall catalytic effect of different enzymes. These studies pointed toward electrostatic effects as the most important catalytic contributions. The nature of this electrostatic stabilization mechanism is far from being obvious because the electrostatic interaction between the reacting system and the surrounding area is similar in enzymes and in solution. However, the difference is that enzymes have a preorganized dipolar environment that does not have to pay the reorganization energy for stabilizing the relevant transition states. Apparently, the catalytic power of enzymes is stored in their folding energy in the form of the preorganized polar environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the learning experiences and opinions obtained from a group of undergraduate students in their interaction with several on-line multimedia resources included in a free on-line course about Computer Networks. These new educational resources employed are based on the Web 2.0 approach such as blogs, videos and virtual labs which have been added in a web-site for distance self-learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Designing educational resources allow students to modify their learning process. In particular, on-line and downloadable educational resources have been successfully used in engineering education the last years [1]. Usually, these resources are free and accessible from web. In addition, they are designed and developed by lecturers and used by their students. But, they are rarely developed by students in order to be used by other students. In this work-in-progress, lecturers and students are working together to implement educational resources, which can be used by students to improve the learning process of computer networks subject in engineering studies. In particular, network topologies to model LAN (Local Area Network) and MAN (Metropolitan Area Network) are virtualized in order to simulate the behavior of the links and nodes when they are interconnected with different physical and logical design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

South Africa and Mexico are ripe with drug trafficking. The gangs and syndicates running the drug businesses in these two countries collaborate occasionally. Communication between these international drug business partners takes place on social media. Their main language of communication is English, mixed with some limited use of Spanish and Afrikaans. The key purpose of the interactions between the South African and Mexican parties is the organisation of their business activities. This study aims at examining how the drug traffickers position each other and themselves regarding their common business interest and how their relationship evolves throughout their interactions. Moreover, it is of interest to look at how these people make use of different social media and their affordances. For this a qualitative analysis of the interaction between two drug traffickers (one South African and one Mexican) on Facebook, Threema and PlayStation 4 was performed. Computer-mediated communication between these two main informants was studied at various stages of their relationship. Results show that at first the interaction between the South African and Mexican drug traffickers consists of interpersonal negotiations of power. The high risk of the drug business and gang/syndicate membership paired with intercultural frictions causes the two interlocutors to be extremely cautious and at the same time to mark their position. As their relationship develops and they gain trust in each other a shift to interpersonal negotiations of solidarity takes place. In these discursive practices diverse linguistic strategies are employed for creating relational effects and for positioning the other and the self. The discursive activities of the interactants are also identity practices. Thus, the two drug traffickers construct identities through these social practices, positioning and their interpersonal relationship.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report presents an overview of wave-current interacion, including comprehensive review of references to significant U.S. and foreign literature available through December 1981. Specific topics under review are the effects of horizontally and vertically varying currents on waves, wave refraction by currents, dissipation and turbulence, small- and medium-scale currents, caustics and focusing, and wave breaking. The results of the review are then examined for engineering applications. The most appropriate general-purpose computer program to include wave-current interaction is the Dutch Rijkswaterstaat program CREDIZ, which is based on a parabolic wave equation. Further applications include wave and current forces on structures and possibly sediment transport. The report concludes with a brief state-of-the-art review of wave-current interaction and a list of topics needing further research and development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Federal Highway Administration, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate the electron exchange coupling for a phosphorus donor pair in silicon perturbed by a J-gate potential and the boundary effects of the silicon host geometry. In addition to the electron-electron exchange interaction we also calculate the contact hyperfine interaction between the donor nucleus and electron as a function of the varying experimental conditions. Donor separation, depth of the P nuclei below the silicon oxide layer and J-gate voltage become decisive factors in determining the strength of both the exchange coupling and hyperfine interaction-both crucial components for qubit operations in the Kane quantum computer. These calculations were performed using an anisotropic effective-mass Hamiltonian approach. The behaviour of the donor exchange coupling as a function of the parameters varied in this work provides relevant information for the experimental design of these devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the effect of the solid surface on the fluid-fluid intermolecular potential energy. This modified fluid-fluid interaction energy due to the inducement of a solid surface is used in the grand canonical Monte Carlo (GCMC) simulation of various noble gases, nitrogen, and methane on graphitized thermal carbon black. This effect is such that the effective interaction potential energy between two particles close to surface is less than the potential energy if the solid substrate is not present. With this modification the GCMC simulation results agree extremely well with the experimental data over a wide range of pressures while the simulation results with the unmodified potential energy give rise to a shoulder near the neighborhood of monolayer coverage and the significant overprediction of the second and higher layer coverages. In particular the unmodified GCMC results exhibit very sharp change in those higher layers while the experimental data have a much gradual change in the uptake. We will illustrate this theory with adsorption data of argon, xenon, neon, nitrogen, and methane on graphitized thermal carbon black.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length was studied with Canonical Ensemble (NVT) and Gibbs Ensemble Monte Carlo Simulations (GEMC). The Canonical Ensemble was a collection of cubic simulation boxes in which a finite pore resides, while the Gibbs Ensemble was that of the pore space of the finite pore. Argon was used as a model for Lennard-Jones fluids, while the adsorbent was modelled as a finite carbon slit pore whose two walls were composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. The Lennard-Jones (LJ) 12-6 potential model was used to compute the interaction energy between two fluid particles, and also between a fluid particle and a carbon atom. Argon adsorption isotherms were obtained at 87.3 K for pore widths of 1.0, 1.5 and 2.0 nm using both Canonical and Gibbs Ensembles. These results were compared with isotherms obtained with corresponding infinite pores using Grand Canonical Ensembles. The effects of the number of cycles necessary to reach equilibrium, the initial allocation of particles, the displacement step and the simulation box size were particularly investigated in the Monte Carlo simulation with Canonical Ensembles. Of these parameters, the displacement step had the most significant effect on the performance of the Monte Carlo simulation. The simulation box size was also important, especially at low pressures at which the size must be sufficiently large to have a statistically acceptable number of particles in the bulk phase. Finally, it was found that the Canonical Ensemble and the Gibbs Ensemble both yielded the same isotherm (within statistical error); however, the computation time for GEMC was shorter than that for canonical ensemble simulation. However, the latter method described the proper interface between the reservoir and the adsorbed phase (and hence the meniscus).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Monte Carlo simulation method is Used 10 study the effects of adsorption strength and topology of sites on adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length. Argon is used as a model adsorbate, while the adsorbent is modeled as a finite carbon slit pore whose two walls composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. Impurities having well depth of interaction greater than that of carbon atom are assumed to be grafted onto the surface. Different topologies of the impurities; corner, centre, shelf and random topologies are studied. Adsorption isotherms of argon at 87.3 K are obtained for pore having widths of 1, 1.5 and 3 11111 using a Grand Canonical Monte Carlo simulation (GCMC). These results are compared with isotherms obtained for infinite pores. It is shown that the Surface heterogeneity affects significantly the overall adsorption isotherm, particularly the phase transition. Basically it shifts the onset of adsorption to lower pressure and the adsorption isotherms for these four impurity models are generally greater than that for finite pore. The positions of impurities on solid Surface also affect the shape of the adsorption isotherm and the phase transition. We have found that the impurities allocated at the centre of pore walls provide the greatest isotherm at low pressures. However when the pressure increases the impurities allocated along the edges of the graphene layers show the most significant effect on the adsorption isotherm. We have investigated the effect of surface heterogeneity on adsorption hysteresis loops of three models of impurity topology, it shows that the adsorption branches of these isotherms are different, while the desorption branches are quite close to each other. This suggests that the desorption branch is either the thermodynamic equilibrium branch or closer to it than the adsorption branch. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of Lennard-Jones fluids (argon and nitrogen) onto a graphitized thermal carbon black surface was studied with a Grand Canonical Monte Carlo Simulation (GCMC). The surface was assumed to be finite in length and composed of three graphene layers. When the GCMC simulation was used to describe adsorption on a graphite surface, an over-prediction of the isotherm was consistently observed in the pressure regions where the first and second layers are formed. To remove this over-prediction, surface mediation was accounted for to reduce the fluid-fluid interaction. Do and co-workers have introduced the so-called surface-mediation damping factor to correct the over-prediction for the case of a graphite surface of infinite extent, and this approach has yielded a good description of the adsorption isotherm. In this paper, the effects of the finite size of the graphene layer on the adsorption isotherm and how these would affect the extent of the surface mediation were studied. It was found that this finite-surface model provides a better description of the experimental data for graphitized thermal carbon black of high surface area (i.e. small crystallite size) while the infinite- surface model describes data for carbon black of very low surface area (i.e. large crystallite size).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer display height and desk design to allow forearm support are two critical design features of workstations for information technology tasks. However there is currently no 3D description of head and neck posture with different computer display heights and no direct comparison to paper based information technology tasks. There is also inconsistent evidence on the effect of forearm support on posture and no evidence on whether these features interact. This study compared the 3D head, neck and upper limb postures of 18 male and 18 female young adults whilst working with different display and desk design conditions. There was no substantial interaction between display height and desk design. Lower display heights increased head and neck flexion with more spinal asymmetry when working with paper. The curved desk, designed to provide forearm support, increased scapula elevation/protraction and shoulder flexion/abduction.