972 resultados para Integer programming problems
Resumo:
MSC 2010: 05C50, 15A03, 15A06, 65K05, 90C08, 90C35
Resumo:
Bus stops are key links in the journeys of transit patrons with disabilities. Inaccessible bus stops prevent people with disabilities from using fixed-route bus services, thus limiting their mobility. The Americans with Disabilities Act (ADA) of 1990 prescribes the minimum requirements for bus stop accessibility by riders with disabilities. Due to limited budgets, transit agencies can only select a limited number of bus stop locations for ADA improvements annually. These locations should preferably be selected such that they maximize the overall benefits to patrons with disabilities. In addition, transit agencies may also choose to implement the universal design paradigm, which involves higher design standards than current ADA requirements and can provide amenities that are useful for all riders, like shelters and lighting. Many factors can affect the decision to improve a bus stop, including rider-based aspects like the number of riders with disabilities, total ridership, customer complaints, accidents, deployment costs, as well as locational aspects like the location of employment centers, schools, shopping areas, and so on. These interlacing factors make it difficult to identify optimum improvement locations without the aid of an optimization model. This dissertation proposes two integer programming models to help identify a priority list of bus stops for accessibility improvements. The first is a binary integer programming model designed to identify bus stops that need improvements to meet the minimum ADA requirements. The second involves a multi-objective nonlinear mixed integer programming model that attempts to achieve an optimal compromise among the two accessibility design standards. Geographic Information System (GIS) techniques were used extensively to both prepare the model input and examine the model output. An analytic hierarchy process (AHP) was applied to combine all of the factors affecting the benefits to patrons with disabilities. An extensive sensitivity analysis was performed to assess the reasonableness of the model outputs in response to changes in model constraints. Based on a case study using data from Broward County Transit (BCT) in Florida, the models were found to produce a list of bus stops that upon close examination were determined to be highly logical. Compared to traditional approaches using staff experience, requests from elected officials, customer complaints, etc., these optimization models offer a more objective and efficient platform on which to make bus stop improvement suggestions.
Resumo:
Integer programming, simulation, and rules of thumb have been integrated to develop a simulation-based heuristic for short-term assignment of fleet in the car rental industry. It generates a plan for car movements, and a set of booking limits to produce high revenue for a given planning horizon. Three different scenarios were used to validate the heuristic. The heuristic's mean revenue was significant higher than the historical ones, in all three scenarios. Time to run the heuristic for each experiment was within the time limits of three hours set for the decision making process even though it is not fully automated. These findings demonstrated that the heuristic provides better plans (plans that yield higher profit) for the dynamic allocation of fleet than the historical decision processes. Another contribution of this effort is the integration of IP and rules of thumb to search for better performance under stochastic conditions.
Resumo:
Acknowledgement The first author would like to acknowledge the University of Aberdeen and the Henderson Economics Research Fund for funding his PhD studies in the period 2011-2014 which formed the basis for the research presented in this paper. The first author would also like to acknowledge the Macaulay Development Trust which funds his postdoctoral fellowship with The James Hutton Institute, Aberdeen, Scotland. The authors thank two anonymous referees for valuable comments and suggestions on earlier versions of this paper. All usual caveats apply
Resumo:
I explore and analyze a problem of finding the socially optimal capital requirements for financial institutions considering two distinct channels of contagion: direct exposures among the institutions, as represented by a network and fire sales externalities, which reflect the negative price impact of massive liquidation of assets.These two channels amplify shocks from individual financial institutions to the financial system as a whole and thus increase the risk of joint defaults amongst the interconnected financial institutions; this is often referred to as systemic risk. In the model, there is a trade-off between reducing systemic risk and raising the capital requirements of the financial institutions. The policymaker considers this trade-off and determines the optimal capital requirements for individual financial institutions. I provide a method for finding and analyzing the optimal capital requirements that can be applied to arbitrary network structures and arbitrary distributions of investment returns.
In particular, I first consider a network model consisting only of direct exposures and show that the optimal capital requirements can be found by solving a stochastic linear programming problem. I then extend the analysis to financial networks with default costs and show the optimal capital requirements can be found by solving a stochastic mixed integer programming problem. The computational complexity of this problem poses a challenge, and I develop an iterative algorithm that can be efficiently executed. I show that the iterative algorithm leads to solutions that are nearly optimal by comparing it with lower bounds based on a dual approach. I also show that the iterative algorithm converges to the optimal solution.
Finally, I incorporate fire sales externalities into the model. In particular, I am able to extend the analysis of systemic risk and the optimal capital requirements with a single illiquid asset to a model with multiple illiquid assets. The model with multiple illiquid assets incorporates liquidation rules used by the banks. I provide an optimization formulation whose solution provides the equilibrium payments for a given liquidation rule.
I further show that the socially optimal capital problem using the ``socially optimal liquidation" and prioritized liquidation rules can be formulated as a convex and convex mixed integer problem, respectively. Finally, I illustrate the results of the methodology on numerical examples and
discuss some implications for capital regulation policy and stress testing.
Resumo:
The aim of this research is twofold: Firstly, to model and solve a complex nurse scheduling problem with an integer programming formulation and evolutionary algorithms. Secondly, to detail a novel statistical method of comparing and hence building better scheduling algorithms by identifying successful algorithm modifications. The comparison method captures the results of algorithms in a single figure that can then be compared using traditional statistical techniques. Thus, the proposed method of comparing algorithms is an objective procedure designed to assist in the process of improving an algorithm. This is achieved even when some results are non-numeric or missing due to infeasibility. The final algorithm outperforms all previous evolutionary algorithms, which relied on human expertise for modification.
Resumo:
The aim of this research is twofold: Firstly, to model and solve a complex nurse scheduling problem with an integer programming formulation and evolutionary algorithms. Secondly, to detail a novel statistical method of comparing and hence building better scheduling algorithms by identifying successful algorithm modifications. The comparison method captures the results of algorithms in a single figure that can then be compared using traditional statistical techniques. Thus, the proposed method of comparing algorithms is an objective procedure designed to assist in the process of improving an algorithm. This is achieved even when some results are non-numeric or missing due to infeasibility. The final algorithm outperforms all previous evolutionary algorithms, which relied on human expertise for modification.
Resumo:
The aim of this research is twofold: Firstly, to model and solve a complex nurse scheduling problem with an integer programming formulation and evolutionary algorithms. Secondly, to detail a novel statistical method of comparing and hence building better scheduling algorithms by identifying successful algorithm modifications. The comparison method captures the results of algorithms in a single figure that can then be compared using traditional statistical techniques. Thus, the proposed method of comparing algorithms is an objective procedure designed to assist in the process of improving an algorithm. This is achieved even when some results are non-numeric or missing due to infeasibility. The final algorithm outperforms all previous evolutionary algorithms, which relied on human expertise for modification.
Resumo:
Worldwide air traffic tends to increase and for many airports it is no longer an op-tion to expand terminals and runways, so airports are trying to maximize their op-erational efficiency. Many airports already operate near their maximal capacity. Peak hours imply operational bottlenecks and cause chained delays across flights impacting passengers, airlines and airports. Therefore there is a need for the opti-mization of the ground movements at the airports. The ground movement prob-lem consists of routing the departing planes from the gate to the runway for take-off, and the arriving planes from the runway to the gate, and to schedule their movements. The main goal is to minimize the time spent by the planes during their ground movements while respecting all the rules established by the Ad-vanced Surface Movement, Guidance and Control Systems of the International Civil Aviation. Each aircraft event (arrival or departing authorization) generates a new environment and therefore a new instance of the Ground Movement Prob-lem. The optimization approach proposed is based on an Iterated Local Search and provides a fast heuristic solution for each real-time event generated instance granting all safety regulations. Preliminary computational results are reported for real data comparing the heuristic solutions with the solutions obtained using a mixed-integer programming approach.
Resumo:
Energy Conservation Measure (ECM) project selection is made difficult given real-world constraints, limited resources to implement savings retrofits, various suppliers in the market and project financing alternatives. Many of these energy efficient retrofit projects should be viewed as a series of investments with annual returns for these traditionally risk-averse agencies. Given a list of ECMs available, federal, state and local agencies must determine how to implement projects at lowest costs. The most common methods of implementation planning are suboptimal relative to cost. Federal, state and local agencies can obtain greater returns on their energy conservation investment over traditional methods, regardless of the implementing organization. This dissertation outlines several approaches to improve the traditional energy conservations models. Any public buildings in regions with similar energy conservation goals in the United States or internationally can also benefit greatly from this research. Additionally, many private owners of buildings are under mandates to conserve energy e.g., Local Law 85 of the New York City Energy Conservation Code requires any building, public or private, to meet the most current energy code for any alteration or renovation. Thus, both public and private stakeholders can benefit from this research. The research in this dissertation advances and presents models that decision-makers can use to optimize the selection of ECM projects with respect to the total cost of implementation. A practical application of a two-level mathematical program with equilibrium constraints (MPEC) improves the current best practice for agencies concerned with making the most cost-effective selection leveraging energy services companies or utilities. The two-level model maximizes savings to the agency and profit to the energy services companies (Chapter 2). An additional model presented leverages a single congressional appropriation to implement ECM projects (Chapter 3). Returns from implemented ECM projects are used to fund additional ECM projects. In these cases, fluctuations in energy costs and uncertainty in the estimated savings severely influence ECM project selection and the amount of the appropriation requested. A risk aversion method proposed imposes a minimum on the number of “of projects completed in each stage. A comparative method using Conditional Value at Risk is analyzed. Time consistency was addressed in this chapter. This work demonstrates how a risk-based, stochastic, multi-stage model with binary decision variables at each stage provides a much more accurate estimate for planning than the agency’s traditional approach and deterministic models. Finally, in Chapter 4, a rolling-horizon model allows for subadditivity and superadditivity of the energy savings to simulate interactive effects between ECM projects. The approach makes use of inequalities (McCormick, 1976) to re-express constraints that involve the product of binary variables with an exact linearization (related to the convex hull of those constraints). This model additionally shows the benefits of learning between stages while remaining consistent with the single congressional appropriations framework.
Resumo:
The Train Timetabling Problem (TTP) has been widely studied for freight and passenger rail systems. A lesser effort has been devoted to the study of high-speed rail systems. A modeling issue that has to be addressed is to model departure time choice of passengers on railway services. Passengers who use these systems attempt to travel at predetermined hours due to their daily life necessities (e.g., commuter trips). We incorporate all these features into TTP focusing on high-speed railway systems. We propose a Rail Scheduling and Rolling Stock (RSch-RS) model for timetable planning of high-speed railway systems. This model is composed of two essential elements: i) an infrastructure model for representing the railway network: it includes capacity constraints of the rail network and the Rolling-Stock constraints; and ii) a demand model that defines how the passengers choose the departure time. The resulting model is a mixed-integer programming model which objective function attempts to maximize the profit for the rail operator
Resumo:
Se calculó la obtención de las constantes ópticas usando el método de Wolfe. Dichas contantes: coeficiente de absorción (α), índice de refracción (n) y espesor de una película delgada (d ), son de importancia en el proceso de caracterización óptica del material. Se realizó una comparación del método del Wolfe con el método empleado por R. Swanepoel. Se desarrolló un modelo de programación no lineal con restricciones, de manera que fue posible estimar las constantes ópticas de películas delgadas semiconductoras, a partir únicamente, de datos de transmisión conocidos. Se presentó una solución al modelo de programación no lineal para programación cuadrática. Se demostró la confiabilidad del método propuesto, obteniendo valores de α = 10378.34 cm−1, n = 2.4595, d =989.71 nm y Eg = 1.39 Ev, a través de experimentos numéricos con datos de medidas de transmitancia espectral en películas delgadas de Cu3BiS3.
Resumo:
Even without formal guarantees of their effectiveness, adversarial attacks against Machine Learning models frequently fool new defenses. We identify six key asymmetries that contribute to this phenomenon and formulate four guidelines to build future-proof defenses by preventing such asymmetries. We also prove that attacking a classifier is NP-complete, while defending from such attacks is Sigma_2^P-complete. We then introduce Counter-Attack (CA), an asymmetry-free metadefense that determines whether a model is robust on a given input by estimating its distance from the decision boundary. Under specific assumptions CA can provide theoretical detection guarantees. Additionally, we prove that while CA is NP-complete, fooling CA is Sigma_2^P-complete. Even when using heuristic relaxations, we show that our method can reliably identify non-robust points. As part of our experimental evaluation, we introduce UG100, a new dataset obtained by applying a provably optimal attack to six limited-scale networks (three for MNIST and three for CIFAR10), each trained in three different manners.
Resumo:
In this paper, a joint location-inventory model is proposed that simultaneously optimises strategic supply chain design decisions such as facility location and customer allocation to facilities, and tactical-operational inventory management and production scheduling decisions. All this is analysed in a context of demand uncertainty and supply uncertainty. While demand uncertainty stems from potential fluctuations in customer demands over time, supply-side uncertainty is associated with the risk of “disruption” to which facilities may be subject. The latter is caused by external factors such as natural disasters, strikes, changes of ownership and information technology security incidents. The proposed model is formulated as a non-linear mixed integer programming problem to minimise the expected total cost, which includes four basic cost items: the fixed cost of locating facilities at candidate sites, the cost of transport from facilities to customers, the cost of working inventory, and the cost of safety stock. Next, since the optimisation problem is very complex and the number of evaluable instances is very low, a "matheuristic" solution is presented. This approach has a twofold objective: on the one hand, it considers a larger number of facilities and customers within the network in order to reproduce a supply chain configuration that more closely reflects a real-world context; on the other hand, it serves to generate a starting solution and perform a series of iterations to try to improve it. Thanks to this algorithm, it was possible to obtain a solution characterised by a lower total system cost than that observed for the initial solution. The study concludes with some reflections and the description of possible future insights.
Resumo:
Over one million people lost their lives in the last twenty years from natural disasters like wildfires, earthquakes and man-made disasters. In such scenarios the usage of a fleet of robots aims at the parallelization of the workload and thus increasing speed and capabilities to complete time sensitive missions. This work focuses on the development of a dynamic fleet management system, which consists in the management of multiple agents cooperating in order to accomplish tasks. We presented a Mixed Integer Programming problem for the management and planning of mission’s tasks. The problem was solved using both an exact and a heuristic approach. The latter is based on the idea of solving iteratively smaller instances of the complete problem. Alongside, a fast and efficient algorithm for estimation of travel times between tasks is proposed. Experimental results demonstrate that the proposed heuristic approach is able to generate quality solutions, within specific time limits, compared to the exact one.