947 resultados para Infinite Horizon
Resumo:
Axisymmetric consolidation is a classical boundary value problem for geotechnical engineers. Under some circumstances an analysis in which the changes in pore pressure, effective stress and displacement can be uncoupled from each other is sufficient, leading to a Terzaghi formulation of the axisymmetric consolidation equation in terms of the pore pressure. However, representation of the Mandel-Cryer effect usually requires more complex, coupled, Biot formulations. A new coupled formulation for the plane strain, axisymmetric consolidation problem is presented for small, linear elastic deformations. A single, easily evaluated parameter couples changes in pore pressure to changes in effective stress, and the resulting differential equation for pore pressure dissipation is very similar to Terzaghi’s classic formulation. The governing equations are then solved using finite differences and the consolidation of a solid infinite cylinder analysed, calculating the variation with time and with radius of the excess pore pressure and the radial displacement. Comparison with a previously published semi-analytical solution indicates that the formulation successfully embodies the Mandel-Cryer effect.
Resumo:
It is proved that for any $f$ is an element of $C^k(L,R)$, where k is a natural number and L is a closed linear subspace of a nuclear Frechet space $X$, the function $f$ can be extended to a function of class $C^{k-1}$ defined on the entire space $X$. It is also proved that for any $f$ is an element of $C^k(L, R)$, where $k$ is a natural number of infinity and L is a closed linear subspace of a dual $X$ of a nuclear Frechet space, the function $f$ can be extended to a function of class $C^k$ defined on the entire space $X$. In addition, it is proved that under these conditions, the existence of a linear extension operator is equivalent to the complementability of the subspace.
Resumo:
An example is constructed of an infinite-dimensional separable pre-Hilbert space non-homeomorphic to any of its closed hyperplanes.
Resumo:
Let $E$ be a nonnormable Frechet space, and let $E'$ be the space of all continuous linear functionals on $E$ in the strong topology. A continuous mapping $f : E' \to E'$ such that for any $t_0\in R$ and $x_0\in E'$, the Cauchy problem $\dot x= f(x)$, x(t_0) = x_0$ has no solutions is constructed.
Resumo:
Gigerenzer, Todd, and the ABC Research Group argue that optimisation under constraints leads to an infinite regress due to decisions about how much information to consider when deciding. In certain cases, however, their fast and frugal heuristics lead instead to an endless series of decisions about how best to decide.
Resumo:
We prove that every unital bounded linear mapping from a unital purely infinite C*-algebra of real rank zero into a unital Banach algebra which preserves elements of square zero is a Jordan homomorphism. This entails a description of unital surjective spectral isometries as the Jordan isomorphisms in this setting.
Resumo:
1. Horizon scanning is an essential tool for environmental scientists if they are to contribute to the evidence base for Government, its agencies and other decision makers to devise and implement environmental policies. The implication of not foreseeing issues that are foreseeable is illustrated by the contentious responses to genetically modified herbicide-tolerant crops in the UK, and by challenges surrounding biofuels, foot and mouth disease, avian influenza and climate change.