983 resultados para Hydroelectric power plants -- Ontario -- Thorold
Resumo:
The report presents a grammar capable of analyzing the process of production of electricity in modular elements for different power-supply systems, defined using semantic and formal categories. In this way it becomes possible to individuate similarities and differences in the process of production of electricity, and then measure and compare “apples” with “apples” and “oranges” with “oranges”. For instance, when comparing the various unit operations of the process of production of electricity with nuclear energy to the analogous unit operations of the process of production of fossil energy, we see that the various phases of the process are the same. The only difference is related to characteristics of the process associated with the generation of heat which are completely different in the two systems. As a matter of facts, the performance of the production of electricity from nuclear energy can be studied, by comparing the biophysical costs associated with the different unit operations taking place in nuclear and fossil power plants when generating process heat or net electricity. By adopting this approach, it becomes possible to compare the performance of the two power-supply systems by comparing their relative biophysical requirements for the phases that both nuclear energy power plants and fossil energy power plants have in common: (i) mining; (ii) refining/enriching; (iii) generating heat/electricity; (iv) handling the pollution/radioactive wastes. This report presents the evaluation of the biophysical requirements for the two powersupply systems: nuclear energy and fossil energy. In particular, the report focuses on the following requirements: (i) electricity; (ii) fossil-fuels, (iii) labor; and (iv) materials.
Resumo:
Inadequate usage can degrade natural resources, particularly soils. More attention has been paid to practices aiming at the recovery of degraded soils in the last years, e.g, the use of organic fertilizers, liming and introduction of species adapted to adverse conditions. The purpose of this study was therefore to investigate the recovery of physical properties of a Red Latosol (Oxisol) degraded by the construction of a hydroelectric power station. In the study area, a soil layer about 8m thick had been withdrawn by heavy machines leading not only to soil compaction, but resulting in high-degree degradation. The experiment was arranged in a completely randomized design with nine treatments and four replications. The treatments consisted of: 1- soil mobilization by tilling (to ensure the effect of mechanical mobilization in all treatments) without planting, but growth of spontaneous vegetation; 2- Black velvet bean (Stizolobium aterrimum Piper & Tracy); 3- Pigeonpea (Cajanus cajan (L.) DC); 4- Liming + black velvet bean; 5-Liming + pigeonpea until 1994, when replaced by jack bean (Canavalia ensiformis); 6- Liming + gypsum + black velvet bean; 7- Liming + gypsum + pigeonpea until 1994, when replaced by jack bean; and two controls as reference: 8- Native Cerrado vegetation and 9- bare soil (no tilling and no planting), left under natural conditions and in this situation, without spontaneous vegetation. In treatments 1 through 7, the soil was tilled. Treatments were installed in 1992 and left unmanaged for seven years, until brachiaria (Brachiaria decumbens) was planted in all plots in 1999. Seventeen years after implantation, the properties soil macroporosity, microporosity, total porosity, bulk density and aggregate stability were assessed in the previously described treatments in the soil layers 0.00-0.10; 0.10-0.20 and 0.20-0.40 m, and soil Penetration Resistance and soil moisture in 0.00-0.15 and 0.15-0.30 m. The plants were evaluated for: brachiaria dry matter and spontaneous growth of native tree species in the plots as of 2006. Results were analyzed by variance analysis and Tukey´s test at 5 % for mean comparison. In all treatments, except for the bare soil (no recovery measures), ongoing recovery of the degraded soil physical properties was observed. Macroporosity, soil bulk density and total porosity were good soil quality indicators. The occurrence of spontaneous native species indicated the soil recovery process. The best adapted species was Machaerium acutifolium Vogel, with the largest number of plants and most advanced development; the dry matter production of B. decumbens in recovering soil was similar to normal conditions, evidencing soil recovery.
Resumo:
When decommissioning a nuclear facility it is important to be able to estimate activity levels of potentially radioactive samples and compare with clearance values defined by regulatory authorities. This paper presents a method of calibrating a clearance box monitor based on practical experimental measurements and Monte Carlo simulations. Adjusting the simulation for experimental data obtained using a simple point source permits the computation of absolute calibration factors for more complex geometries with an accuracy of a bit more than 20%. The uncertainty of the calibration factor can be improved to about 10% when the simulation is used relatively, in direct comparison with a measurement performed in the same geometry but with another nuclide. The simulation can also be used to validate the experimental calibration procedure when the sample is supposed to be homogeneous but the calibration factor is derived from a plate phantom. For more realistic geometries, like a small gravel dumpster, Monte Carlo simulation shows that the calibration factor obtained with a larger homogeneous phantom is correct within about 20%, if sample density is taken as the influencing parameter. Finally, simulation can be used to estimate the effect of a contamination hotspot. The research supporting this paper shows that activity could be largely underestimated in the event of a centrally-located hotspot and overestimated for a peripherally-located hotspot if the sample is assumed to be homogeneously contaminated. This demonstrates the usefulness of being able to complement experimental methods with Monte Carlo simulations in order to estimate calibration factors that cannot be directly measured because of a lack of available material or specific geometries.
Resumo:
Diplomityön tavoitteena on selvittää Wärtsilän dieselvoimalaitosten jätevedenkäsittelyn vallitseva tila. Tutkimuksessa keskitytään raskaspolttoöljykäyttöisiin voimalaitoksiin. Työssä selvitetään yleisimmät dieselvoimalaitosten jätevesille asetetut vaatimukset. Selvitys tehdään keräämälläja tutkimalla dieselvoimalaitosten jätevesille sovellettuja standardeja. Työssä selvitetään myös dieselvoimalaitokselta ulostulevan jäteveden laatu sekä nykyisen jätevedenkäsittelyjärjestelmän toiminta. Selvitys tehdään keräämällä ja tutkimalla yrityksen sisäisiä tietoja, sekä ottamalla ja analysoimalla jätevesinäytteitä. Näytteiden otto ja analysointi toteutetaan vierailemallakahdessa voimalaitoksessa sekä yhdessä muussa kohteessa. Jäteveden laatu ennen ja jälkeen käsittelyn määritetään. Myös öljynjalostusteollisuuden jätevedenkäsittelyä tarkastellaan kirjallisuuteen pohjautuen. Tarkastelun tavoitteena on hankkia tietoa jätevedenkäsittelystä kohteissa, joissa jäteveden laatu vastaa dieselvoimalaitoksella syntyvää jätevettä. Vertailun vuoksi myös öljynjalostusteollisuudelle asetetuttuja jätevesistandardeja tutkitaan. Lisäksi työssä tutkitaan myös joitakin muita jätevedenkäsittelymenetelmiä. Diplomityön tuloksena määritetään dieselvoimalaitosten jätevedenkäsittelyn tulevaisuuden haasteet ja mahdollisuudet.
Resumo:
Pysyäkseen kilpailukykyisenä vapautuneilla sähkömarkkinoilla on voimalaitoksen energiantuotantokustannusten oltava mahdollisimman matalia, tinkimättä kuitenkaan korkeasta käytettävyydestä. Polttoaineen energiasisällön mahdollisimman hyvä hyödyntäminen on ratkaisevan tärkeää voimalaitoksen kannattavuudelle. Polttoainekustannusten osuus on konvektiivisilla laitoksilla yleensä yli puolet koko elinjakson kustannuksista. Kun vielä päästörajat tiukkenevat koko ajan, korostuu polttoaineen korkea hyötykäyttö entisestään. Korkea energiantuotannon luotettavuus ja käytettävyys ovat myös elintärkeitä pyrittäessä kustannusten minimointiin. Tässä työssä on käyty läpi voimalaitoksen kustannuksiin vaikuttavia käsitteitä, kuten hyötysuhdetta, käytettävyyttä, polttoaineen hintoja, ylös- ja alasajoja ja tärkeimpiä häviöitä. Ajostrategiassa ja poikkeamien hallinnassa pyritään hyvään hyötysuhteeseen ja alhaisiin päästöihin joka käyttötilanteessa. Lisäksi on tarkasteltu tiettyjen suureiden, eli höyryn lämpötilan ja paineen, savukaasun hapen pitoisuuden, savukaasun loppulämpötilan, sekä lauhduttimen paineen poikkeamien vaikutusta ohjearvostaan energiantuotantokustannuksiin. Happi / hiilimonoksidi optimoinnissa on otettu huomioon myös pohjatuhkan palamattomat.
Resumo:
Several possible methods of increasing the efficiency and power of hydro power plants by improving the flow passages are investigated in this stydy. The theoretical background of diffuser design and its application to the optimisation of hydraulic turbine draft tubes is presented in the first part of this study. Several draft tube modernisation projects that have been carried out recently are discussed. Also, a method of increasing the efficiency of the draft tube by injecting a high velocity jet into the boundary layer is presented. Methods of increasing the head of a hydro power plant by using an ejector or a jet pump are discussed in the second part of this work. The theoretical principles of various ejector and jet pump types are presented and four different methods of calculating them are examined in more detail. A self-made computer code is used to calculate the gain in the head for two example power plants. Suitable ejector installations for the example plants are also discussed. The efficiency of the ejector power was found to be in the range 6 - 15 % for conventional head increasers, and 30 % for the jet pump at its optimum operating point. In practice, it is impossible to install an optimised jet pump with a 30 % efficiency into the draft tube as this would considerabely reduce the efficiency of the draft tube at normal operating conditions. This demonstrates, however, the potential for improvement which lies in conventional head increaser technology. This study is based on previous publications and on published test results. No actual laboratory measurements were made for this study. Certain aspects of modelling the flow in the draft tube using computational fluid dynamics are discussed in the final part of this work. The draft tube inlet velocity field is a vital boundary condition for such a calculation. Several previously measured velocity fields that have successfully been utilised in such flow calculations are presented herein.
Resumo:
Torrefaction is one of the pretreatment technologies to enhance the fuel characteristics of biomass. The efficient and continuous operation of a torrefaction reactor, in the commercial scale, demands a secure biomass supply, in addition to adequate source of heat. Biorefinery plants or biomass-fuelled steam power plants have the potential to integrate with the torrefaction reactor to exchange heat and mass, using available infrastructure and energy sources. The technical feasibility of this integration is examined in this study. A new model for the torrefaction process is introduced and verified by the available experimental data. The torrefaction model is then integrated in different steam power plants to simulate possible mass and energy exchange between the reactor and the plants. The performance of the integrated plant is investigated for different configurations and the results are compared.
Resumo:
This work focuses on the 159.5 kW solar photovoltaic power plant project installed at the Lappeenranta University of Technology in 2013 as an example of what a solar plant project could be in Finland. The project consists of a two row carport and a flat roof installation on the roof of the university laboratories. The purpose of this project is not only its obvious energy savings potential but also to serve as research and teaching laboratory tool. By 2013, there were not many large scale solar power plants in Finland. For this reason, the installation and data experience from the solar power plant at LUT has brought valuable information for similar projects in northern countries. This work includes a first part for the design and acquisition of the project to continue explaining about the components and their installation. At the end, energy produced by this solar power plant is studied and calculated to find out some relevant economical results. For this, the radiation arriving to southern Finland, the losses of the system in cold weather and the impact of snow among other aspects are taken into account.
Resumo:
This study is done to examine waste power plant’s optimal processing chain and it is important to consider from several points of view on why one option is better than the other. This is to insure that the right decision is made. Incineration of waste has devel-oped to be one decent option for waste disposal. There are several legislation matters and technical options to consider when starting up a waste power plant. From the tech-niques pretreatment, burner and flue gas cleaning are the biggest ones to consider. The treatment of incineration residues is important since it can be very harmful for the envi-ronment. The actual energy production from waste is not highly efficient and there are several harmful compounds emitted. Recycling of waste before incineration is not very typical and there are not many recycling options for materials that cannot be easily re-cycled to same product. Life cycle assessment is a good option for studying the envi-ronmental effect of the system. It has four phases that are part of the iterative study process. In this study the case environment is a waste power plant. The modeling of the plant is done with GaBi 6 software and the scope is from gate-to-grave. There are three different scenarios, from which the first and second are compared to each other to reach conclusions. Zero scenario is part of the study to demonstrate situation without the power plant. The power plant in this study is recycling some materials in scenario one and in scenario two even more materials and utilize the bottom ash more ways than one. The model has the substitutive processes for the materials when they are not recycled in the plant. The global warming potential results show that scenario one is the best option. The variable costs that have been considered tell the same result. The conclusion is that the waste power plant should not recycle more and utilize bottom ash in a number of ways. The area is not ready for that kind of utilization and production from recycled materials.
Resumo:
Construction on the Thorold tunnel began in 1965 and was completed in 1967. It was designed by H. G. Acres & Company Ltd. and built by Pitts-Atlas, a joint venture of C.A. Pitts, General Contractor Ltd., and Atlas Construction Company Ltd. The tunnel replaced two lift bridges (Bridge 9 at Ontario Paper Co. and Bridge 7) that carried traffic over the Welland Canal. The majority of the construction occurred during the winter months, when the canal was closed to shipping. The water was drained and concrete sections shaped liked tubes were poured, creating the tunnel. During the summer months, the end sections of the tunnel were constructed so that shipping could continue uninterrupted. The 24 million dollar project was financed jointly by the Department of Highways and the St. Lawrence Seaway Authority. The tunnel was officially opened on September 18, 1968.
Resumo:
A letter from The Ontario Paper Co., Limited of Thorold, Ontario. The letter, dated 15 August 1949, celebrates the Thirtieth Anniversary of association between Arthur A. Schmon and the paper company. The letter praises the work of Mr. Schmon, "a leader of progressive thinking and action, a man with a true sense of values, sound judgement and a deep sense of justice". There are ten signatures at the bottom of the letter.
Resumo:
The diffusion of Concentrating Solar Power Systems (CSP) systems is currently taking place at a much slower pace than photovoltaic (PV) power systems. This is mainly because of the higher present cost of the solar thermal power plants, but also for the time that is needed in order to build them. Though economic attractiveness of different Concentrating technologies varies, still PV power dominates the market. The price of CSP is expected to drop significantly in the near future and wide spread installation of them will follow. The main aim of this project is the creation of different relevant case studies on solar thermal power generation and a comparison betwwen them. The purpose of this detailed comparison is the techno-economic appraisal of a number of CSP systems and the understanding of their behaviour under various boundary conditions. The CSP technologies which will be examined are the Parabolic Trough, the Molten Salt Power Tower, the Linear Fresnel Mirrors and the Dish Stirling. These systems will be appropriatly sized and simulated. All of the simulations aim in the optimization of the particular system. This includes two main issues. The first is the achievement of the lowest possible levelized cost of electricity and the second is the maximization of the annual energy output (kWh). The project also aims in the specification of these factors which affect more the results and more specifically, in what they contribute to the cost reduction or the power generation. Also, photovoltaic systems will be simulated under same boundary conditions to facolitate a comparison between the PV and the CSP systems. Last but not leats, there will be a determination of the system which performs better in each case study.
Resumo:
No Brasil, água e energia têm uma forte e histórica nterdependência, de forma que a contribuição da energia hidráulica ao desenvolvimento econômico do País tem sido expressiva, seja no atendimento às diversas demandas da economia, ou da própria sociedade, melhorando o conforto das habitações e a qualidade de vida das pessoas. Também desempenha papel importante na integração e desenvolvimento de regiões distantes dos grandes centros urbanos e industriais. A década de 70 registrou um crescimento elevado da demanda por energia elétrica no Brasil; reflexo de políticas desenvolvimentistas de governos anteriores que promoveram o crescimento industrial do País atraindo e criando indústrias de uso alto intensivo da letricidade. No caso da região Nordeste, o crescimento econômico trouxe consigo o risco de um grave racionamento de energia. Para eliminar tal risco, o Estado por intermédio do Sistema Eletrobras realizou a construção de grandes usinas hidrelétricas interligando-as ao sistema nacional. Não há como negar que esta solução provocou um grande benefício para grande parte da população brasileira, mas trouxe, para uma parcela do povo brasileiro, um custo social bastante elevado. Essas pessoas ficaram então conhecidas como os “atingidos por barragens”. Para eles, a construção das barragens de usinas como Itaipu, Tucuruí, Sobradinho e Itaparica significou o deslocamento compulsório dos locais aonde viviam e tinham suas tradições e referência culturais e afetivas. Esta pesquisa objetiva resgatar a memória deste período de grandes obras, promessas de desenvolvimento e marcas deixadas em milhares de famílias brasileiras. O estudo em questão é também uma tentativa de mostrar como o Programa de Reassentamento de Itaparica, projeto conduzido pela Companhia Hidro Elétrica do São Francisco – CHESF foi o marco de uma nova dinâmica para tratamento das questões sociais envolvendo a reparação de danos causados aos atingidos por barragens e se constitui talvez, no primeiro caso de Responsabilidade Social Corporativa do setor elétrico brasileiro.
Resumo:
No presente trabalho foram coletados acessos de Eichhornia crassipes (aguapé) nos reservatórios das hidrelétricas de Barra Bonita, Bariri, Três Irmãos, Ilha Solteira, Salto Grande, Promissão, Ibitinga, Nova Avanhandava, Mogi-Guaçu, Euclides da Cunha, Jaguari, Jurumirim, Jupiá, Paraibuna e Porto Primavera, do Estado de São Paulo. Estes acessos foram submetidos a um estudo de variabilidade genética por meio de RAPD. Os primers utilizados foram OP X02, OP X07, OP X11 e OP P10 (TTCCGCCACC, GAGCGAGGCT, GGAGCCTCAG, TCCCGCCTAG, respectivamente). Dentre os acessos coletados e analisados, 21 apresentaram índice de identidade genética acima de 0,90. O dendrograma gerado com dados entre populações revelou forte coerência com a distribuição geográfica dos reservatórios que continham as plantas de aguapé. A variabilidade genética encontrada entre os acessos coletados nos diferentes reservatórios estudados foi elevada, considerando que a principal via de reprodução dessa espécie é a vegetativa.
Resumo:
The literature widely recognizes that shift workers have more health complaints than the general population. The objective of this study was to describe the prevalence of sleep complaints and verify the polysomnographic (PSG) variables of shift workers in two Brazilian nuclear power plants. We carried out a subjective evaluation with a sleep questionnaire. Based on these results, the interviewees that reported sleep-related complaints were referred for polysomnographic evaluation. of the 327 volunteers initially evaluated by the sleep questionnaire, 113 (35%) reported sleep complaints; they were significantly older, had higher body mass index (BMI), and worked more years on shifts than those without sleep complaints. of these 113, 90 met criteria for various sleep disorders: 30 (9%) showed obstructive sleep apnea (OSA), 18 (5.5%) showed limb movement, and 42 (13%) evidenced both sleep problems and had a significantly higher proportion of sleep stage 1 and arousals compared with the 23 shift workers that had no indices of sleep problems. The present study found that 90 (27.5%) of the evaluated participants met the PSG criteria of some type of clinical sleep disorder. This high proportion should be investigated for associations with other aspects of work, such as working hours, working schedule, years performing shift work, and access to health services. Due to the strong association between sleep disorders and the incidence of fatigue and sleepiness, the evaluation of the sleep patterns and complaints of shift workers is essential and should be considered to be one of the basic strategies of industry to prevent accidents.