962 resultados para Hardware
Resumo:
The dHDL language has been defined to improve hardware design productivity. This is achieved through the definition of a better reuse interface (including parameters, attributes and macroports) and the creation of control structures that help the designer in the hardware generation process.
Resumo:
This work proposes an encapsulation scheme aimed at simplifying the reuse process of hardware cores. This hardware encapsulation approach has been conceived with a twofold objective. First, we look for the improvement of the reuse interface associated with the hardware core description. This is carried out in a first encapsulation level by improving the limited types and configuration options available in the conventional HDLs interface, and also providing information related to the implementation itself. Second, we have devised a more generic interface focused on describing the function avoiding details from a particular implementation, what corresponds to a second encapsulation level. This encapsulation allows the designer to define how to configure and use the design to implement a given functionality. The proposed encapsulation schemes help improving the amount of information that can be supplied with the design, and also allow to automate the process of searching, configuring and implementing diverse alternatives.
Resumo:
In the last recent years, with the popularity of image compression techniques, many architectures have been proposed. Those have been generally based on the Forward and Inverse Discrete Cosine Transform (FDCT, IDCT). Alternatively, compression schemes based on discrete "wavelets" transform (DWT), used, both, in JPEG2000 coding standard and in H264-SVC (Scalable Video Coding) standard, do not need to divide the image into non-overlapping blocks or macroblocks. This paper discusses the DLMT (Discrete Lopez-Moreno Transform) hardware implementation. It proposes a new scheme intermediate between the DCT and the DWT, comparing results of the most relevant proposed architectures for benchmarking. The DLMT can also be applied over a whole image, but this does not involve increasing computational complexity. FPGA implementation results show that the proposed DLMT has significant performance benefits and improvements comparing with the DCT and the DWT and consequently it is very suitable for implementation on WSN (Wireless Sensor Network) applications.
Resumo:
This paper proposes an automatic framework for the seamless integration of hardware accelerators, starting from an OpenMP-based application and an XML file describing the HW/SW partitioning. It extends a fully software architecture by generating and integrating the cores, along with the proper interfaces, and the code for scheduling and synchronization. Experimental results show that it is possible to validate different solutions only by varying the input code.
Resumo:
In this work a complete hardware-software support platform for a WSN testbed focused on developing wireless sensor applications in a simple and intuitive way is presented, as an alternative of commercial-motes-based testbeds that can be found in the state of the art. The main target of this hardware-software platform is to provide the highest abstraction level on the management of WSNs but in the simplest way in order to achieve a fast profiling mechanism for reliable prototyping based on the Cookies platform as well as helping users to develop, test and validate Cookie-Based WSN applications.
Resumo:
In this work, a unified algorithm-architecture-circuit co-design environment for complex FPGA system development is presented. The main objective is to find an efficient methodology for designing a configurable optimized FPGA system by using as few efforts as possible in verification stage, so as to speed up the development period. A proposed high performance FFT/iFFT processor for Multiband Orthogonal Frequency Division Multiplexing Ultra Wideband (MB-OFDM UWB) system design process is given as an example to demonstrate the proposed methodology. This efficient design methodology is tested and considered to be suitable for almost all types of complex FPGA system designs and verifications.
Resumo:
Este libro ha sido escrito con el propósito de servir de texto a los estudiantes de la asignatura "Fundamentos de los ordenadores" de la E.T.S. de Ingenieros de Telecomunicación
Resumo:
La optimización de parámetros tales como el consumo de potencia, la cantidad de recursos lógicos empleados o la ocupación de memoria ha sido siempre una de las preocupaciones principales a la hora de diseñar sistemas embebidos. Esto es debido a que se trata de sistemas dotados de una cantidad de recursos limitados, y que han sido tradicionalmente empleados para un propósito específico, que permanece invariable a lo largo de toda la vida útil del sistema. Sin embargo, el uso de sistemas embebidos se ha extendido a áreas de aplicación fuera de su ámbito tradicional, caracterizadas por una mayor demanda computacional. Así, por ejemplo, algunos de estos sistemas deben llevar a cabo un intenso procesado de señales multimedia o la transmisión de datos mediante sistemas de comunicaciones de alta capacidad. Por otra parte, las condiciones de operación del sistema pueden variar en tiempo real. Esto sucede, por ejemplo, si su funcionamiento depende de datos medidos por el propio sistema o recibidos a través de la red, de las demandas del usuario en cada momento, o de condiciones internas del propio dispositivo, tales como la duración de la batería. Como consecuencia de la existencia de requisitos de operación dinámicos es necesario ir hacia una gestión dinámica de los recursos del sistema. Si bien el software es inherentemente flexible, no ofrece una potencia computacional tan alta como el hardware. Por lo tanto, el hardware reconfigurable aparece como una solución adecuada para tratar con mayor flexibilidad los requisitos variables dinámicamente en sistemas con alta demanda computacional. La flexibilidad y adaptabilidad del hardware requieren de dispositivos reconfigurables que permitan la modificación de su funcionalidad bajo demanda. En esta tesis se han seleccionado las FPGAs (Field Programmable Gate Arrays) como los dispositivos más apropiados, hoy en día, para implementar sistemas basados en hardware reconfigurable De entre todas las posibilidades existentes para explotar la capacidad de reconfiguración de las FPGAs comerciales, se ha seleccionado la reconfiguración dinámica y parcial. Esta técnica consiste en substituir una parte de la lógica del dispositivo, mientras el resto continúa en funcionamiento. La capacidad de reconfiguración dinámica y parcial de las FPGAs es empleada en esta tesis para tratar con los requisitos de flexibilidad y de capacidad computacional que demandan los dispositivos embebidos. La propuesta principal de esta tesis doctoral es el uso de arquitecturas de procesamiento escalables espacialmente, que son capaces de adaptar su funcionalidad y rendimiento en tiempo real, estableciendo un compromiso entre dichos parámetros y la cantidad de lógica que ocupan en el dispositivo. A esto nos referimos con arquitecturas con huellas escalables. En particular, se propone el uso de arquitecturas altamente paralelas, modulares, regulares y con una alta localidad en sus comunicaciones, para este propósito. El tamaño de dichas arquitecturas puede ser modificado mediante la adición o eliminación de algunos de los módulos que las componen, tanto en una dimensión como en dos. Esta estrategia permite implementar soluciones escalables, sin tener que contar con una versión de las mismas para cada uno de los tamaños posibles de la arquitectura. De esta manera se reduce significativamente el tiempo necesario para modificar su tamaño, así como la cantidad de memoria necesaria para almacenar todos los archivos de configuración. En lugar de proponer arquitecturas para aplicaciones específicas, se ha optado por patrones de procesamiento genéricos, que pueden ser ajustados para solucionar distintos problemas en el estado del arte. A este respecto, se proponen patrones basados en esquemas sistólicos, así como de tipo wavefront. Con el objeto de poder ofrecer una solución integral, se han tratado otros aspectos relacionados con el diseño y el funcionamiento de las arquitecturas, tales como el control del proceso de reconfiguración de la FPGA, la integración de las arquitecturas en el resto del sistema, así como las técnicas necesarias para su implementación. Por lo que respecta a la implementación, se han tratado distintos aspectos de bajo nivel dependientes del dispositivo. Algunas de las propuestas realizadas a este respecto en la presente tesis doctoral son un router que es capaz de garantizar el correcto rutado de los módulos reconfigurables dentro del área destinada para ellos, así como una estrategia para la comunicación entre módulos que no introduce ningún retardo ni necesita emplear recursos configurables del dispositivo. El flujo de diseño propuesto se ha automatizado mediante una herramienta denominada DREAMS. La herramienta se encarga de la modificación de las netlists correspondientes a cada uno de los módulos reconfigurables del sistema, y que han sido generadas previamente mediante herramientas comerciales. Por lo tanto, el flujo propuesto se entiende como una etapa de post-procesamiento, que adapta esas netlists a los requisitos de la reconfiguración dinámica y parcial. Dicha modificación la lleva a cabo la herramienta de una forma completamente automática, por lo que la productividad del proceso de diseño aumenta de forma evidente. Para facilitar dicho proceso, se ha dotado a la herramienta de una interfaz gráfica. El flujo de diseño propuesto, y la herramienta que lo soporta, tienen características específicas para abordar el diseño de las arquitecturas dinámicamente escalables propuestas en esta tesis. Entre ellas está el soporte para el realojamiento de módulos reconfigurables en posiciones del dispositivo distintas a donde el módulo es originalmente implementado, así como la generación de estructuras de comunicación compatibles con la simetría de la arquitectura. El router has sido empleado también en esta tesis para obtener un rutado simétrico entre nets equivalentes. Dicha posibilidad ha sido explotada para aumentar la protección de circuitos con altos requisitos de seguridad, frente a ataques de canal lateral, mediante la implantación de lógica complementaria con rutado idéntico. Para controlar el proceso de reconfiguración de la FPGA, se propone en esta tesis un motor de reconfiguración especialmente adaptado a los requisitos de las arquitecturas dinámicamente escalables. Además de controlar el puerto de reconfiguración, el motor de reconfiguración ha sido dotado de la capacidad de realojar módulos reconfigurables en posiciones arbitrarias del dispositivo, en tiempo real. De esta forma, basta con generar un único bitstream por cada módulo reconfigurable del sistema, independientemente de la posición donde va a ser finalmente reconfigurado. La estrategia seguida para implementar el proceso de realojamiento de módulos es diferente de las propuestas existentes en el estado del arte, pues consiste en la composición de los archivos de configuración en tiempo real. De esta forma se consigue aumentar la velocidad del proceso, mientras que se reduce la longitud de los archivos de configuración parciales a almacenar en el sistema. El motor de reconfiguración soporta módulos reconfigurables con una altura menor que la altura de una región de reloj del dispositivo. Internamente, el motor se encarga de la combinación de los frames que describen el nuevo módulo, con la configuración existente en el dispositivo previamente. El escalado de las arquitecturas de procesamiento propuestas en esta tesis también se puede beneficiar de este mecanismo. Se ha incorporado también un acceso directo a una memoria externa donde se pueden almacenar bitstreams parciales. Para acelerar el proceso de reconfiguración se ha hecho funcionar el ICAP por encima de la máxima frecuencia de reloj aconsejada por el fabricante. Así, en el caso de Virtex-5, aunque la máxima frecuencia del reloj deberían ser 100 MHz, se ha conseguido hacer funcionar el puerto de reconfiguración a frecuencias de operación de hasta 250 MHz, incluyendo el proceso de realojamiento en tiempo real. Se ha previsto la posibilidad de portar el motor de reconfiguración a futuras familias de FPGAs. Por otro lado, el motor de reconfiguración se puede emplear para inyectar fallos en el propio dispositivo hardware, y así ser capaces de evaluar la tolerancia ante los mismos que ofrecen las arquitecturas reconfigurables. Los fallos son emulados mediante la generación de archivos de configuración a los que intencionadamente se les ha introducido un error, de forma que se modifica su funcionalidad. Con el objetivo de comprobar la validez y los beneficios de las arquitecturas propuestas en esta tesis, se han seguido dos líneas principales de aplicación. En primer lugar, se propone su uso como parte de una plataforma adaptativa basada en hardware evolutivo, con capacidad de escalabilidad, adaptabilidad y recuperación ante fallos. En segundo lugar, se ha desarrollado un deblocking filter escalable, adaptado a la codificación de vídeo escalable, como ejemplo de aplicación de las arquitecturas de tipo wavefront propuestas. El hardware evolutivo consiste en el uso de algoritmos evolutivos para diseñar hardware de forma autónoma, explotando la flexibilidad que ofrecen los dispositivos reconfigurables. En este caso, los elementos de procesamiento que componen la arquitectura son seleccionados de una biblioteca de elementos presintetizados, de acuerdo con las decisiones tomadas por el algoritmo evolutivo, en lugar de definir la configuración de las mismas en tiempo de diseño. De esta manera, la configuración del core puede cambiar cuando lo hacen las condiciones del entorno, en tiempo real, por lo que se consigue un control autónomo del proceso de reconfiguración dinámico. Así, el sistema es capaz de optimizar, de forma autónoma, su propia configuración. El hardware evolutivo tiene una capacidad inherente de auto-reparación. Se ha probado que las arquitecturas evolutivas propuestas en esta tesis son tolerantes ante fallos, tanto transitorios, como permanentes y acumulativos. La plataforma evolutiva se ha empleado para implementar filtros de eliminación de ruido. La escalabilidad también ha sido aprovechada en esta aplicación. Las arquitecturas evolutivas escalables permiten la adaptación autónoma de los cores de procesamiento ante fluctuaciones en la cantidad de recursos disponibles en el sistema. Por lo tanto, constituyen un ejemplo de escalabilidad dinámica para conseguir un determinado nivel de calidad, que puede variar en tiempo real. Se han propuesto dos variantes de sistemas escalables evolutivos. El primero consiste en un único core de procesamiento evolutivo, mientras que el segundo está formado por un número variable de arrays de procesamiento. La codificación de vídeo escalable, a diferencia de los codecs no escalables, permite la decodificación de secuencias de vídeo con diferentes niveles de calidad, de resolución temporal o de resolución espacial, descartando la información no deseada. Existen distintos algoritmos que soportan esta característica. En particular, se va a emplear el estándar Scalable Video Coding (SVC), que ha sido propuesto como una extensión de H.264/AVC, ya que este último es ampliamente utilizado tanto en la industria, como a nivel de investigación. Para poder explotar toda la flexibilidad que ofrece el estándar, hay que permitir la adaptación de las características del decodificador en tiempo real. El uso de las arquitecturas dinámicamente escalables es propuesto en esta tesis con este objetivo. El deblocking filter es un algoritmo que tiene como objetivo la mejora de la percepción visual de la imagen reconstruida, mediante el suavizado de los "artefactos" de bloque generados en el lazo del codificador. Se trata de una de las tareas más intensivas en procesamiento de datos de H.264/AVC y de SVC, y además, su carga computacional es altamente dependiente del nivel de escalabilidad seleccionado en el decodificador. Por lo tanto, el deblocking filter ha sido seleccionado como prueba de concepto de la aplicación de las arquitecturas dinámicamente escalables para la compresión de video. La arquitectura propuesta permite añadir o eliminar unidades de computación, siguiendo un esquema de tipo wavefront. La arquitectura ha sido propuesta conjuntamente con un esquema de procesamiento en paralelo del deblocking filter a nivel de macrobloque, de tal forma que cuando se varía del tamaño de la arquitectura, el orden de filtrado de los macrobloques varia de la misma manera. El patrón propuesto se basa en la división del procesamiento de cada macrobloque en dos etapas independientes, que se corresponden con el filtrado horizontal y vertical de los bloques dentro del macrobloque. Las principales contribuciones originales de esta tesis son las siguientes: - El uso de arquitecturas altamente regulares, modulares, paralelas y con una intensa localidad en sus comunicaciones, para implementar cores de procesamiento dinámicamente reconfigurables. - El uso de arquitecturas bidimensionales, en forma de malla, para construir arquitecturas dinámicamente escalables, con una huella escalable. De esta forma, las arquitecturas permiten establecer un compromiso entre el área que ocupan en el dispositivo, y las prestaciones que ofrecen en cada momento. Se proponen plantillas de procesamiento genéricas, de tipo sistólico o wavefront, que pueden ser adaptadas a distintos problemas de procesamiento. - Un flujo de diseño y una herramienta que lo soporta, para el diseño de sistemas reconfigurables dinámicamente, centradas en el diseño de las arquitecturas altamente paralelas, modulares y regulares propuestas en esta tesis. - Un esquema de comunicaciones entre módulos reconfigurables que no introduce ningún retardo ni requiere el uso de recursos lógicos propios. - Un router flexible, capaz de resolver los conflictos de rutado asociados con el diseño de sistemas reconfigurables dinámicamente. - Un algoritmo de optimización para sistemas formados por múltiples cores escalables que optimice, mediante un algoritmo genético, los parámetros de dicho sistema. Se basa en un modelo conocido como el problema de la mochila. - Un motor de reconfiguración adaptado a los requisitos de las arquitecturas altamente regulares y modulares. Combina una alta velocidad de reconfiguración, con la capacidad de realojar módulos en tiempo real, incluyendo el soporte para la reconfiguración de regiones que ocupan menos que una región de reloj, así como la réplica de un módulo reconfigurable en múltiples posiciones del dispositivo. - Un mecanismo de inyección de fallos que, empleando el motor de reconfiguración del sistema, permite evaluar los efectos de fallos permanentes y transitorios en arquitecturas reconfigurables. - La demostración de las posibilidades de las arquitecturas propuestas en esta tesis para la implementación de sistemas de hardware evolutivos, con una alta capacidad de procesamiento de datos. - La implementación de sistemas de hardware evolutivo escalables, que son capaces de tratar con la fluctuación de la cantidad de recursos disponibles en el sistema, de una forma autónoma. - Una estrategia de procesamiento en paralelo para el deblocking filter compatible con los estándares H.264/AVC y SVC que reduce el número de ciclos de macrobloque necesarios para procesar un frame de video. - Una arquitectura dinámicamente escalable que permite la implementación de un nuevo deblocking filter, totalmente compatible con los estándares H.264/AVC y SVC, que explota el paralelismo a nivel de macrobloque. El presente documento se organiza en siete capítulos. En el primero se ofrece una introducción al marco tecnológico de esta tesis, especialmente centrado en la reconfiguración dinámica y parcial de FPGAs. También se motiva la necesidad de las arquitecturas dinámicamente escalables propuestas en esta tesis. En el capítulo 2 se describen las arquitecturas dinámicamente escalables. Dicha descripción incluye la mayor parte de las aportaciones a nivel arquitectural realizadas en esta tesis. Por su parte, el flujo de diseño adaptado a dichas arquitecturas se propone en el capítulo 3. El motor de reconfiguración se propone en el 4, mientras que el uso de dichas arquitecturas para implementar sistemas de hardware evolutivo se aborda en el 5. El deblocking filter escalable se describe en el 6, mientras que las conclusiones finales de esta tesis, así como la descripción del trabajo futuro, son abordadas en el capítulo 7. ABSTRACT The optimization of system parameters, such as power dissipation, the amount of hardware resources and the memory footprint, has been always a main concern when dealing with the design of resource-constrained embedded systems. This situation is even more demanding nowadays. Embedded systems cannot anymore be considered only as specific-purpose computers, designed for a particular functionality that remains unchanged during their lifetime. Differently, embedded systems are now required to deal with more demanding and complex functions, such as multimedia data processing and high-throughput connectivity. In addition, system operation may depend on external data, the user requirements or internal variables of the system, such as the battery life-time. All these conditions may vary at run-time, leading to adaptive scenarios. As a consequence of both the growing computational complexity and the existence of dynamic requirements, dynamic resource management techniques for embedded systems are needed. Software is inherently flexible, but it cannot meet the computing power offered by hardware solutions. Therefore, reconfigurable hardware emerges as a suitable technology to deal with the run-time variable requirements of complex embedded systems. Adaptive hardware requires the use of reconfigurable devices, where its functionality can be modified on demand. In this thesis, Field Programmable Gate Arrays (FPGAs) have been selected as the most appropriate commercial technology existing nowadays to implement adaptive hardware systems. There are different ways of exploiting reconfigurability in reconfigurable devices. Among them is dynamic and partial reconfiguration. This is a technique which consists in substituting part of the FPGA logic on demand, while the rest of the device continues working. The strategy followed in this thesis is to exploit the dynamic and partial reconfiguration of commercial FPGAs to deal with the flexibility and complexity demands of state-of-the-art embedded systems. The proposal of this thesis to deal with run-time variable system conditions is the use of spatially scalable processing hardware IP cores, which are able to adapt their functionality or performance at run-time, trading them off with the amount of logic resources they occupy in the device. This is referred to as a scalable footprint in the context of this thesis. The distinguishing characteristic of the proposed cores is that they rely on highly parallel, modular and regular architectures, arranged in one or two dimensions. These architectures can be scaled by means of the addition or removal of the composing blocks. This strategy avoids implementing a full version of the core for each possible size, with the corresponding benefits in terms of scaling and adaptation time, as well as bitstream storage memory requirements. Instead of providing specific-purpose architectures, generic architectural templates, which can be tuned to solve different problems, are proposed in this thesis. Architectures following both systolic and wavefront templates have been selected. Together with the proposed scalable architectural templates, other issues needed to ensure the proper design and operation of the scalable cores, such as the device reconfiguration control, the run-time management of the architecture and the implementation techniques have been also addressed in this thesis. With regard to the implementation of dynamically reconfigurable architectures, device dependent low-level details are addressed. Some of the aspects covered in this thesis are the area constrained routing for reconfigurable modules, or an inter-module communication strategy which does not introduce either extra delay or logic overhead. The system implementation, from the hardware description to the device configuration bitstream, has been fully automated by modifying the netlists corresponding to each of the system modules, which are previously generated using the vendor tools. This modification is therefore envisaged as a post-processing step. Based on these implementation proposals, a design tool called DREAMS (Dynamically Reconfigurable Embedded and Modular Systems) has been created, including a graphic user interface. The tool has specific features to cope with modular and regular architectures, including the support for module relocation and the inter-module communications scheme based on the symmetry of the architecture. The core of the tool is a custom router, which has been also exploited in this thesis to obtain symmetric routed nets, with the aim of enhancing the protection of critical reconfigurable circuits against side channel attacks. This is achieved by duplicating the logic with an exactly equal routing. In order to control the reconfiguration process of the FPGA, a Reconfiguration Engine suited to the specific requirements set by the proposed architectures was also proposed. Therefore, in addition to controlling the reconfiguration port, the Reconfiguration Engine has been enhanced with the online relocation ability, which allows employing a unique configuration bitstream for all the positions where the module may be placed in the device. Differently to the existing relocating solutions, which are based on bitstream parsers, the proposed approach is based on the online composition of bitstreams. This strategy allows increasing the speed of the process, while the length of partial bitstreams is also reduced. The height of the reconfigurable modules can be lower than the height of a clock region. The Reconfiguration Engine manages the merging process of the new and the existing configuration frames within each clock region. The process of scaling up and down the hardware cores also benefits from this technique. A direct link to an external memory where partial bitstreams can be stored has been also implemented. In order to accelerate the reconfiguration process, the ICAP has been overclocked over the speed reported by the manufacturer. In the case of Virtex-5, even though the maximum frequency of the ICAP is reported to be 100 MHz, valid operations at 250 MHz have been achieved, including the online relocation process. Portability of the reconfiguration solution to today's and probably, future FPGAs, has been also considered. The reconfiguration engine can be also used to inject faults in real hardware devices, and this way being able to evaluate the fault tolerance offered by the reconfigurable architectures. Faults are emulated by introducing partial bitstreams intentionally modified to provide erroneous functionality. To prove the validity and the benefits offered by the proposed architectures, two demonstration application lines have been envisaged. First, scalable architectures have been employed to develop an evolvable hardware platform with adaptability, fault tolerance and scalability properties. Second, they have been used to implement a scalable deblocking filter suited to scalable video coding. Evolvable Hardware is the use of evolutionary algorithms to design hardware in an autonomous way, exploiting the flexibility offered by reconfigurable devices. In this case, processing elements composing the architecture are selected from a presynthesized library of processing elements, according to the decisions taken by the algorithm, instead of being decided at design time. This way, the configuration of the array may change as run-time environmental conditions do, achieving autonomous control of the dynamic reconfiguration process. Thus, the self-optimization property is added to the native self-configurability of the dynamically scalable architectures. In addition, evolvable hardware adaptability inherently offers self-healing features. The proposal has proved to be self-tolerant, since it is able to self-recover from both transient and cumulative permanent faults. The proposed evolvable architecture has been used to implement noise removal image filters. Scalability has been also exploited in this application. Scalable evolvable hardware architectures allow the autonomous adaptation of the processing cores to a fluctuating amount of resources available in the system. Thus, it constitutes an example of the dynamic quality scalability tackled in this thesis. Two variants have been proposed. The first one consists in a single dynamically scalable evolvable core, and the second one contains a variable number of processing cores. Scalable video is a flexible approach for video compression, which offers scalability at different levels. Differently to non-scalable codecs, a scalable video bitstream can be decoded with different levels of quality, spatial or temporal resolutions, by discarding the undesired information. The interest in this technology has been fostered by the development of the Scalable Video Coding (SVC) standard, as an extension of H.264/AVC. In order to exploit all the flexibility offered by the standard, it is necessary to adapt the characteristics of the decoder to the requirements of each client during run-time. The use of dynamically scalable architectures is proposed in this thesis with this aim. The deblocking filter algorithm is the responsible of improving the visual perception of a reconstructed image, by smoothing blocking artifacts generated in the encoding loop. This is one of the most computationally intensive tasks of the standard, and furthermore, it is highly dependent on the selected scalability level in the decoder. Therefore, the deblocking filter has been selected as a proof of concept of the implementation of dynamically scalable architectures for video compression. The proposed architecture allows the run-time addition or removal of computational units working in parallel to change its level of parallelism, following a wavefront computational pattern. Scalable architecture is offered together with a scalable parallelization strategy at the macroblock level, such that when the size of the architecture changes, the macroblock filtering order is modified accordingly. The proposed pattern is based on the division of the macroblock processing into two independent stages, corresponding to the horizontal and vertical filtering of the blocks within the macroblock. The main contributions of this thesis are: - The use of highly parallel, modular, regular and local architectures to implement dynamically reconfigurable processing IP cores, for data intensive applications with flexibility requirements. - The use of two-dimensional mesh-type arrays as architectural templates to build dynamically reconfigurable IP cores, with a scalable footprint. The proposal consists in generic architectural templates, which can be tuned to solve different computational problems. •A design flow and a tool targeting the design of DPR systems, focused on highly parallel, modular and local architectures. - An inter-module communication strategy, which does not introduce delay or area overhead, named Virtual Borders. - A custom and flexible router to solve the routing conflicts as well as the inter-module communication problems, appearing during the design of DPR systems. - An algorithm addressing the optimization of systems composed of multiple scalable cores, which size can be decided individually, to optimize the system parameters. It is based on a model known as the multi-dimensional multi-choice Knapsack problem. - A reconfiguration engine tailored to the requirements of highly regular and modular architectures. It combines a high reconfiguration throughput with run-time module relocation capabilities, including the support for sub-clock reconfigurable regions and the replication in multiple positions. - A fault injection mechanism which takes advantage of the system reconfiguration engine, as well as the modularity of the proposed reconfigurable architectures, to evaluate the effects of transient and permanent faults in these architectures. - The demonstration of the possibilities of the architectures proposed in this thesis to implement evolvable hardware systems, while keeping a high processing throughput. - The implementation of scalable evolvable hardware systems, which are able to adapt to the fluctuation of the amount of resources available in the system, in an autonomous way. - A parallelization strategy for the H.264/AVC and SVC deblocking filter, which reduces the number of macroblock cycles needed to process the whole frame. - A dynamically scalable architecture that permits the implementation of a novel deblocking filter module, fully compliant with the H.264/AVC and SVC standards, which exploits the macroblock level parallelism of the algorithm. This document is organized in seven chapters. In the first one, an introduction to the technology framework of this thesis, specially focused on dynamic and partial reconfiguration, is provided. The need for the dynamically scalable processing architectures proposed in this work is also motivated in this chapter. In chapter 2, dynamically scalable architectures are described. Description includes most of the architectural contributions of this work. The design flow tailored to the scalable architectures, together with the DREAMs tool provided to implement them, are described in chapter 3. The reconfiguration engine is described in chapter 4. The use of the proposed scalable archtieectures to implement evolvable hardware systems is described in chapter 5, while the scalable deblocking filter is described in chapter 6. Final conclusions of this thesis, and the description of future work, are addressed in chapter 7.
Resumo:
Un sistema informático es un grupo de máquinas unidas físicamente unas a otras por medios eléctricos, colocadas bajo la dependencia de un órgano central de decisión y control que hace ejecutar a las distintas máquinas un plan de trabajo establecido previamente por el hombre
Resumo:
Autonomous systems require, in most of the cases, reasoning and decision-making capabilities. Moreover, the decision process has to occur in real time. Real-time computing means that every situation or event has to have an answer before a temporal deadline. In complex applications, these deadlines are usually in the order of milliseconds or even microseconds if the application is very demanding. In order to comply with these timing requirements, computing tasks have to be performed as fast as possible. The problem arises when computations are no longer simple, but very time-consuming operations. A good example can be found in autonomous navigation systems with visual-tracking submodules where Kalman filtering is the most extended solution. However, in recent years, some interesting new approaches have been developed. Particle filtering, given its more general problem-solving features, has reached an important position in the field. The aim of this thesis is to design, implement and validate a hardware platform that constitutes itself an embedded intelligent system. The proposed system would combine particle filtering and evolutionary computation algorithms to generate intelligent behavior. Traditional approaches to particle filtering or evolutionary computation have been developed in software platforms, including parallel capabilities to some extent. In this work, an additional goal is fully exploiting hardware implementation advantages. By using the computational resources available in a FPGA device, better performance results in terms of computation time are expected. These hardware resources will be in charge of extensive repetitive computations. With this hardware-based implementation, real-time features are also expected.
Resumo:
One of the main concerns of evolvable and adaptive systems is the need of a training mechanism, which is normally done by using a training reference and a test input. The fitness function to be optimized during the evolution (training) phase is obtained by comparing the output of the candidate systems against the reference. The adaptivity that this type of systems may provide by re-evolving during operation is especially important for applications with runtime variable conditions. However, fully automated self-adaptivity poses additional problems. For instance, in some cases, it is not possible to have such reference, because the changes in the environment conditions are unknown, so it becomes difficult to autonomously identify which problem requires to be solved, and hence, what conditions should be representative for an adequate re-evolution. In this paper, a solution to solve this dependency is presented and analyzed. The system consists of an image filter application mapped on an evolvable hardware platform, able to evolve using two consecutive frames from a camera as both test and reference images. The system is entirely mapped in an FPGA, and native dynamic and partial reconfiguration is used for evolution. It is also shown that using such images, both of them being noisy, as input and reference images in the evolution phase of the system is equivalent or even better than evolving the filter with offline images. The combination of both techniques results in the completely autonomous, noise type/level agnostic filtering system without reference image requirement described along the paper.
Resumo:
Evolvable Hardware (EH) is a technique that consists of using reconfigurable hardware devices whose configuration is controlled by an Evolutionary Algorithm (EA). Our system consists of a fully-FPGA implemented scalable EH platform, where the Reconfigurable processing Core (RC) can adaptively increase or decrease in size. Figure 1 shows the architecture of the proposed System-on-Programmable-Chip (SoPC), consisting of a MicroBlaze processor responsible of controlling the whole system operation, a Reconfiguration Engine (RE), and a Reconfigurable processing Core which is able to change its size in both height and width. This system is used to implement image filters, which are generated autonomously thanks to the evolutionary process. The system is complemented with a camera that enables the usage of the platform for real time applications.
Resumo:
In this paper, an architecture based on a scalable and flexible set of Evolvable Processing arrays is presented. FPGA-native Dynamic Partial Reconfiguration (DPR) is used for evolution, which is done intrinsically, letting the system to adapt autonomously to variable run-time conditions, including the presence of transient and permanent faults. The architecture supports different modes of operation, namely: independent, parallel, cascaded or bypass mode. These modes of operation can be used during evolution time or during normal operation. The evolvability of the architecture is combined with fault-tolerance techniques, to enhance the platform with self-healing features, making it suitable for applications which require both high adaptability and reliability. Experimental results show that such a system may benefit from accelerated evolution times, increased performance and improved dependability, mainly by increasing fault tolerance for transient and permanent faults, as well as providing some fault identification possibilities. The evolvable HW array shown is tailored for window-based image processing applications.
Resumo:
Evolvable hardware (EH) is an interesting alternative to conventional digital circuit design, since autonomous generation of solutions for a given task permits self-adaptivity of the system to changing environments, and they present inherent fault tolerance when evolution is intrinsically performed. Systems based on FPGAs that use Dynamic and Partial Reconfiguration (DPR) for evolving the circuit are an example. Also, thanks to DPR, these systems can be provided with scalability, a feature that allows a system to change the number of allocated resources at run-time in order to vary some feature, such as performance. The combination of both aspects leads to scalable evolvable hardware (SEH), which changes in size as an extra degree of freedom when trying to achieve the optimal solution by means of evolution. The main contributions of this paper are an architecture of a scalable and evolvable hardware processing array system, some preliminary evolution strategies which take scalability into consideration, and to show in the experimental results the benefits of combined evolution and scalability. A digital image filtering application is used as use case.
Resumo:
El poder disponer de la instrumentación y los equipos electrónicos resulta vital en el diseño de circuitos analógicos. Permiten realizar las pruebas necesarias y el estudio para el buen funcionamiento de estos circuitos. Los equipos se pueden diferenciar en instrumentos de excitación, los que proporcionan las señales al circuito, y en instrumentos de medida, los que miden las señales generadas por el circuito. Estos equipos sirven de gran ayuda pero a su vez tienen un precio elevado lo que impide en muchos casos disponer de ellos. Por esta principal desventaja, se hace necesario conseguir un dispositivo de bajo coste que sustituya de alguna manera a los equipos reales. Si el instrumento es de medida, este sistema de bajo coste puede ser implementado mediante un equipo hardware encargado de adquirir los datos y una aplicación ejecutándose en un ordenador donde analizarlos y presentarlos en la pantalla. En el caso de que el instrumento sea de excitación, el único cometido del sistema hardware es el de proporcionar las señales cuya configuración ha enviado el ordenador. En un equipo real, es el propio equipo el que debe realizar todas esas acciones: adquisición, procesamiento y presentación de los datos. Además, la dificultad de realizar modificaciones o ampliaciones de las funcionalidades en un instrumento tradicional con respecto a una aplicación de queda patente. Debido a que un instrumento tradicional es un sistema cerrado y uno cuya configuración o procesamiento de datos es hecho por una aplicación, algunas de las modificaciones serían realizables modificando simplemente el software del programa de control, por lo que el coste de las modificaciones sería menor. En este proyecto se pretende implementar un sistema hardware que tenga las características y realice las funciones del equipamiento real que se pueda encontrar en un laboratorio de electrónica. También el desarrollo de una aplicación encargada del control y el análisis de las señales adquiridas, cuya interfaz gráfica se asemeje a la de los equipos reales para facilitar su uso. ABSTRACT. The instrumentation and electronic equipment are vital for the design of analogue circuits. They enable to perform the necessary testing and study for the proper functioning of these circuits. The devices can be classified into the following categories: excitation instruments, which transmit the signals to the circuit, and measuring instruments, those in charge of measuring the signals produced by the circuit. This equipment is considerably helpful, however, its high price often makes it hardly accessible. For this reason, low price equipment is needed in order to replace real devices. If the instrument is measuring, this low cost system can be implemented by hardware equipment to acquire the data and running on a computer where analyzing and present on the screen application. In case of an excitation the instrument, the only task of the hardware system is to provide signals which sent the computer configuration. In a real instrument, is the instrument itself that must perform all these actions: acquisition, processing and presentation of data. Moreover, the difficulty of making changes or additions to the features in traditional devices with respect to an application running on a computer is evident. This is due to the fact that a traditional instrument is a closed system and its configuration or data processing is made by an application. Therefore, certain changes can be made just by modifying the control program software. Consequently, the cost of these modifications is lower. This project aims to implement a hardware system with the same features and functions of any real device, available in an electronics laboratory. Besides, it aims to develop an application for the monitoring and analysis of acquired signals. This application is provided with a graphic interface resembling those of real devices in order to facilitate its use.