978 resultados para Habitat preference index


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ten correlates of successful colonization were tested and met in the life history of the Cuban treefrog in Florida and the Caribbean. Like many successful colonizing species of animals, the Cuban treefrog was highly fecund; reproduction was possible at a small body size in males (27.0 mm) and females (45.0 mm), and large females could lay large clutches and eggs throughout the year. Generation times were short in this species thereby accelerating the colonization process. Tadpoles and post-metamorphic individuals could exploit a wide range of physical conditions with respect to weather conditions and structure of the habitat. The Cuban treefrog occupied the terrestrial-arboreal niche which was only marginally exploited by other species in Florida. Habitat preference of the Cuban treefrog was for mesophytic forests and disturbed areas, and both habitats were found in native and introduced ranges. The ability to coexist with man further enabled the Cuban treefrog to expand its geographic range. A broad diet enabled the Cuban treefrog to exploit a wide range of prey species and sizes thereby alleviating an important constraint to colonization success. The Cuban treefrog was gregarious and vagile, thereby accelerating the process of dispersal which is crucial to the colonization process. Thus, many features in its life history enabled the Cuban treefrog to rapidly disperse and colonize, often in high population densities, many kinds of sites in its native and introduced range. Conformity to these correlates by the Cuban treefrog ultimately provides predictive power regarding the future colonization of this tropical frog. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current water management practices in South Florida have negatively impacted many species inhabiting Florida Bay. Variable and high salinity has been identified as a key stressor in these estuaries. The Comprehensive Everglades Restoration Plan (CERP) includes water redistribution projects that will restore natural freshwater flows to northeastern Florida Bay. My studies focused on the following central theme and hypotheses: Biological performance measures (i.e., growth, reproduction, survival), behavior (i.e., habitat preference and locomotor behavior) and diversity of estuarine fish will be controlled by changes in salinity and water quality that will occur as a result of the restoration of freshwater flow to the bay. A series of acute and subchronic physiological toxicity studies were conducted to determine the effects of salinity changes on the life stages (embryo/larval, juvenile, adult) and fecundity of four native estuarine fish (Cyprinodon variegatus, Floridichthys carpio, Poecilia latipinna, and Gambusia holbrooki). Fish were exposed to a range of salinity concentrations (freshwater to hypersaline) based on salinity profiles in the study areas. Growth (length, weight) and survival were measured. Salinity trials included both rapid and gradual change events. Results show negative effects of acute, abrupt salinity changes on fish survival, development and reproductive success as a result of salinity stress. Other studies targeted reproduction and critical embryo-larval/neonate development as key areas for detecting long-term population effects of salinity change in Florida Bay. Adults of C. variegates and P. latipinna were also examined for behavioral responses to pulsed salinity changes. These responses include changes in swimming performance, locomotor behavior and zone preference. Finally, an ecological risk assessment was conducted for adverse salinity conditions in northeastern Florida Bay. Using the U.S. EPA's framework, the risk to estuarine fish species diversity was assessed against regional salinity profiles from a 17-year database. Based on the risk assessment, target salinity profiles for these areas are recommended for managers.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current water management practices in South Florida have negatively impacted many species inhabiting Florida Bay. Variable and high salinity has been identified as a key stressor in these estuaries. The comprehensive Everglades Restoration Plan (CERP) includes water redistribution projects that will restore natural freshwater flows to northeastern Florida Bay. My studies focused on the following central theme and hypotheses: Biological performance measures (i.e., growth, reproduction, survival), behavior (i.e., habitat preference and locomotor behavior) and diversity of estuarine fish will be controlled by changes in salinity and water quality that will occur as a result of the restoration of freshwater flow to the bay. A series of acute and subchronic physiological toxicity studies were conducted to determine the effects of salinity changes on the life stages (embryo/larval, juvenile, adult) and fecundity of four native estuarine fish (Cyprinodon variegatus, Floridichthys carpio, Poecilia latipinna, and Gambusia holbrooki). Fishe were exposed to a range of salinity concentrations (freshwater to hypersaline) based on salinity profiles in the study areas. Growth (length, weight) and survival were measured. Salinity trials included both rapid and gradual change events. Results show negative effects of acute, abrupt salinity changes on fish survival, development and reproductive success as a result of salinity stress. Other studies targeted reproduction and critical embryo-larval/neonate development as key areas for detecting long-term population effects of salinity change in Florida Bay. Adults of C. variegatus and P. latipinna were also examined for behavioral responses to pulsed salinity changes. These responses include changes in swimming performance, locomotor behavior and zone preference. Finally, an ecological risk assessment was conducted for adverse salinity conditions in northeastern Florida Bay. Using the U.S. EPA's framework, the risk to estuarine fish species diversity was assessed against regional salinity profiles from a 17-year database. Based on the risk assessment, target salinity profiles for these areas are recommended for managers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chemical composition of organic matter (Corg, Norg, d13C, d1SN, and n-alkanes) was studied in the top layer of bottom sediments of the East Siberian Sea. Possible ways were proposed to estimate the amount of the terrigenous component in their organic matter (OM). The fraction of terrigenous OM estimated by the combined use of genetic indicators varied from 15% in the eastern part of the sea, near the Long Strait, to 95% in the estuaries of the Indigirka and Kolyma rivers, averaging 62% over the sea area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Paleoenvironmental studies based on terrigenous biomarker proxies from sediment cores collected close to the mouth of large river systems rely on a proper understanding of the processes controlling origin, transport and deposition of biomarkers. Here, we contribute to the understanding of these processes by analyzing long-chain n-alkanes from the Amazon River system. We use the dD composition of long-chain n-alkanes from river bed sediments from the Amazon River and its major tributaries, as well as marine core-top samples collected off northeastern South America as tracers for different source areas. The d13C composition of the same compounds is used to differentiate between long-chain n-alkanes from modern forest vegetation and petrogenic organic matter. Our d13C results show depleted d13C values (-33 to -36 per mil) in most samples, indicating a modern forest source for most of the samples. Enriched values (-31 to -33 per mil) are only found in a few samples poor in organic carbon indicating minor contributions from a fossil petrogenic source. Long-chain n-alkane dD analyses show more depleted values for the western tributaries, the Madeira and Solimões Rivers (-152 to -168 per mil), while n-alkanes from the lowland tributaries, the Negro, Xingu and Tocantins Rivers (-142 to -154 per mil), yield more enriched values. The n-alkane dD values thus reflect the mean annual isotopic composition of precipitation, which is most deuterium-depleted in the western Amazon Basin and more enriched in the eastern sector of the basin. Samples from the Amazon estuary show a mixed long-chain n-alkane dD signal from both eastern lowland and western tributaries. Marine core-top samples underlying the Amazon freshwater plume yield dD values similar to those from the Amazon estuary, while core-top samples from outside the plume showed more enriched values. Although the variability in the river bed data precludes quantitative assessment of relative contributions, our results indicate that long-chain n-alkanes from the Amazon estuary and plume represent an integrated signal of different regions of the onshore basin. Our results also imply that n-alkanes are not extensively remineralized during transport and that the signal at the Amazon estuary and plume includes refractory compounds derived from the western sector of the Basin. These findings will aid in the interpretation of plant wax-based records of marine sediment cores collected from the adjacent ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The age of organic material discharged by rivers provides information about its sources and carbon cycling processes within watersheds. While elevated ages in fluvially-transported organic matter are usually explained by erosion of soils and sediments, it is commonly assumed that mainly young organic material is discharged from flat tropical watersheds due to their extensive plant cover and high carbon turnover. Here we present compound-specific radiocarbon data of terrigenous organic fractions from a sedimentary archive offshore the Congo River in conjunction with molecular markers for methane-producing land cover reflecting wetland extent in the watershed. We find that the Congo River has been discharging aged organic matter for several thousand years with increasing ages from the mid- to the Late Holocene. This suggests that aged organic matter in modern samples is concealed by radiocarbon from nuclear weapons testing. By comparison to indicators for past rainfall changes we detect a systematic control of organic matter sequestration and release by continental hydrology mediating temporary carbon storage in wetlands. As aridification also leads to exposure and rapid remineralization of large amounts of previously stored labile organic matter we infer that this process may cause a profound direct climate feedback currently underestimated in carbon cycle assessments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The concentrations, distributions, and stable carbon isotopes (d13C) of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystem characteristics. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. To determine such variability, we present concentrations and d13C compositions of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the outflow of the Congo River. We show that exported plant-dominated n-alkanes (C25-C35) represent a mixture of C3 and C4 end members, each with distinct molecular distributions, as evidenced by an 8.1 ± 0.7 per mil (±1Sigma standard deviation) spread in d13C values across chain-lengths, and weak correlations between individual homologue concentrations (r = 0.52-0.94). In contrast, plant-dominated n-alcohols (C26-C36) and n-alkanoic acids (C26-C36) exhibit stronger positive correlations (r = 0.70-0.99) between homologue concentrations and depleted d13C values (individual homologues average <= -31.3 per mil and -30.8 per mil, respectively), with lower d13C variability across chain-lengths (2.6 ± 0.6 per mil and 2.0 ± 1.1 per mil, respectively). All individual plant-wax lipids show little temporal d13C variability throughout the time-series (1 Sigma <= 0.9 per mil), indicating that their stable carbon isotopes are not a sensitive tracer for temporal changes in plant-wax source in the Congo basin on seasonal to inter-annual timescales. Carbon-normalized concentrations and relative abundances of n-alcohols (19-58% of total plant-wax lipids) and n-alkanoic acids (26-76%) respond rapidly to seasonal changes in runoff, indicating that they are mostly derived from a recently entrained local source. In contrast, a lack of correlation with discharge and low, stable relative abundances (5-16%) indicate that n-alkanes better represent a catchment-integrated signal with minimal response to discharge seasonality. Comparison to published data on other large watersheds indicates that this phenomenon is not limited to the Congo River, and that analysis of multiple plant-wax lipid classes and chain lengths can be used to better resolve local vs. distal ecosystem structure in river catchments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Various studies have demonstrated that the stable hydrogen isotopic composition (dD) of terrestrial leaf waxes tracks that of precipitation (dDprecip) both spatially across climate gradients and over a range of different timescales. Yet, reconstructed estimates of dDprecip and corresponding rainfall typically remain largely qualitative, due mainly to uncertainties in plant ecosystem net fractionation, relative humidity, and the stability of the amount effect through time. Here we present dD values of the C31n-alkane (dDwax) from a marine sediment core offshore the Northwest (NW) African Sahel covering the past 100 years and overlapping with the instrumental record of rainfall. We use this record to investigate whether accurate, quantitative estimates of past rainfall can be derived from our dDwax time series. We infer the composition of vegetation (C3/C4) within the continental catchment area by analysis of the stable carbon isotopic composition of the same compounds (d13Cwax), calculated a net ecosystem fractionation factor, and corrected the dDwax time series accordingly to derive dDprecip. Using the present-day relationship between dDprecip and the amount of precipitation in the tropics, we derive quantitative estimates of past precipitation amounts. Our data show that (a) vegetation composition can be inferred from d13Cwax, (b) the calculated net ecosystem fractionation represents a reasonable estimate, and (c) estimated total amounts of rainfall based on dDwax correspond to instrumental records of rainfall. Our study has important implications for future studies aiming to reconstruct rainfall based on dDwax; the combined data presented here demonstrate that it is feasible to infer absolute rainfall amounts from sedimentary dDwax in tandem with d13Cwax in specific depositional settings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geological, mineralogical and microbiological aspects of the methane cycle in water and sediments of different areas in the oceans are under consideration in the monograph. Original and published estimations of formation- and oxidation rates of methane with use of radioisotope and isotopic methods are given. The role of aerobic and anaerobic microbial oxidation of methane in production of organic matter and in formation of authigenic carbonates is considered. Particular attention is paid to processes of methane transformation in areas of its intensive input to the water column from deep-sea hydrothermal sources, mud volcanoes, and cold methane seeps.