Concentrations and d13C compositions of n-alkanes, n-alcohols, n-alkanoic acids in a 34-month time series of suspended sediments from the outflow of the Congo River


Autoria(s): Hemingway, Jordon D; Schefuß, Enno; Dinga, Bienvenu Jean; Pryer, Helena; Galy, Valier V
Cobertura

LATITUDE: -4.310000 * LONGITUDE: 15.230000 * DATE/TIME START: 2010-11-01T00:00:00 * DATE/TIME END: 2013-08-01T00:00:00

Data(s)

29/08/2016

Resumo

The concentrations, distributions, and stable carbon isotopes (d13C) of plant waxes carried by fluvial suspended sediments contain valuable information about terrestrial ecosystem characteristics. To properly interpret past changes recorded in sedimentary archives it is crucial to understand the sources and variability of exported plant waxes in modern systems on seasonal to inter-annual timescales. To determine such variability, we present concentrations and d13C compositions of three compound classes (n-alkanes, n-alcohols, n-alkanoic acids) in a 34-month time series of suspended sediments from the outflow of the Congo River. We show that exported plant-dominated n-alkanes (C25-C35) represent a mixture of C3 and C4 end members, each with distinct molecular distributions, as evidenced by an 8.1 ± 0.7 per mil (±1Sigma standard deviation) spread in d13C values across chain-lengths, and weak correlations between individual homologue concentrations (r = 0.52-0.94). In contrast, plant-dominated n-alcohols (C26-C36) and n-alkanoic acids (C26-C36) exhibit stronger positive correlations (r = 0.70-0.99) between homologue concentrations and depleted d13C values (individual homologues average <= -31.3 per mil and -30.8 per mil, respectively), with lower d13C variability across chain-lengths (2.6 ± 0.6 per mil and 2.0 ± 1.1 per mil, respectively). All individual plant-wax lipids show little temporal d13C variability throughout the time-series (1 Sigma <= 0.9 per mil), indicating that their stable carbon isotopes are not a sensitive tracer for temporal changes in plant-wax source in the Congo basin on seasonal to inter-annual timescales. Carbon-normalized concentrations and relative abundances of n-alcohols (19-58% of total plant-wax lipids) and n-alkanoic acids (26-76%) respond rapidly to seasonal changes in runoff, indicating that they are mostly derived from a recently entrained local source. In contrast, a lack of correlation with discharge and low, stable relative abundances (5-16%) indicate that n-alkanes better represent a catchment-integrated signal with minimal response to discharge seasonality. Comparison to published data on other large watersheds indicates that this phenomenon is not limited to the Congo River, and that analysis of multiple plant-wax lipid classes and chain lengths can be used to better resolve local vs. distal ecosystem structure in river catchments.

Formato

application/zip, 8 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.864152

doi:10.1594/PANGAEA.864152

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Hemingway, Jordon D; Schefuß, Enno; Dinga, Bienvenu Jean; Pryer, Helena; Galy, Valier V (2016): Multiple plant-wax compounds record differential sources and ecosystem structure in large river catchments. Geochimica et Cosmochimica Acta, 184, 20-40, doi:10.1016/j.gca.2016.04.003

Palavras-Chave #(C23+C25)/(C23+C25+C29+C31) n-alkanes ratio; 26-36; ACL; ACL, 25-35; ACL, 26-36; ACL n-Alkane; ACL n-alkanoic acids; Alk. Acid; Average chain length; C16 Alk. Acid; C16 Alk. Acid d13C; C17 Alk. Acid; C18 Alk. Acid; C18 Alk. Acid d13C; C19 Alk. Acid; C20 Alk. Acid; C20 Alk. Acid d13C; C21 Alk. Acid; C22 Alk. Acid; C22 Alk. Acid d13C; C23; C23 Alk. Acid; C24; C24 Alk. Acid; C24 Alk. Acid d13C; C24 Alk. Acid d13C std dev; C25; C25 Alk. Acid; C25 Alk. Acid d13C; C25 d13C; C25 d13C std dev; C26; C26 Alk. Acid; C26 Alk. Acid d13C; C26 Alk. Acid d13C std dev; C27; C27 Alk. Acid; C27 Alk. Acid d13C; C27 d13C; C27 d13C std dev; C28; C28 Alk. Acid; C28 Alk. Acid d13C; C28 Alk. Acid d13C std dev; C29; C29 Alk. Acid; C29 Alk. Acid d13C; C29 d13C; C29 d13C std dev; C30; C30 Alk. Acid; C30 Alk. Acid d13C; C30 Alk. Acid d13C std dev; C31; C31 Alk. Acid; C31 Alk. Acid d13C; C31 d13C; C31 d13C std dev; C32; C32 Alk. Acid; C32 Alk. Acid d13C; C32 Alk. Acid d13C std dev; C33; C33 Alk. Acid; C33 Alk. Acid d13C; C33 d13C; C33 d13C std dev; C34; C34 Alk. Acid; C34 Alk. Acid d13C; C34 Alk. Acid d13C std dev; C35; C35 Alk. Acid; C35 d13C; C35 d13C std dev; C36 Alk. Acid; Calculated; Carbon, organic, total; Carbon Preference Index, n-Alkanes; Carbon Preference Index, n-alkanoic acids; Carbon Preference Index of n-Alcohols; Contribution; CPI, 25-35; CPI, 26-36; CPI Alk. Acid; CPI n-Alkanes; CPI n-Alkohols; Date/Time; DATE/TIME; Element analyser isotope ratio mass spectrometer (EA-IRMS); f south; Gas chromatography - Flame Ionization Detection (GC-FID); n-Alco; n-Alcohol C16; n-Alcohol C18; n-Alcohol C18, d13C; n-Alcohol C22, d13C; n-Alcohol C23; n-Alcohol C24; n-Alcohol C24, d13C; n-Alcohol C25; n-Alcohol C26; n-Alcohol C26, d13C; n-Alcohol C27; n-Alcohol C28; n-Alcohol C28, d13C; n-Alcohol C29; n-Alcohol C30; n-Alcohol C30, d13C; n-Alcohol C31; n-Alcohol C32; n-Alcohol C32, d13C; n-Alcohol C33; n-Alcohol C34; n-Alcohol C34, d13C; n-Alcohol C35; n-Alcohol C36; n-Alcohols; n-Alkane; n-Alkane, average chain length; n-Alkane C23; n-Alkane C24; n-Alkane C25; n-Alkane C25, d13C; n-Alkane C25, d13C, standard deviation; n-Alkane C26; n-Alkane C27; n-Alkane C27, d13C; n-Alkane C27, d13C, standard deviation; n-Alkane C28; n-Alkane C29; n-Alkane C29, d13C; n-Alkane C29, d13C, standard deviation; n-Alkane C30; n-Alkane C31; n-Alkane C31, d13C; n-Alkane C31, d13C, standard deviation; n-Alkane C32; n-Alkane C33; n-Alkane C33, d13C; n-Alkane C33, d13C, standard deviation; n-Alkane C34; n-Alkane C35; n-Alkane C35, d13C; n-Alkane C35, d13C, standard deviation; n-Alkanoic acid, average chain length; n-Alkanoic acid C16; n-Alkanoic acid C16, d13C; n-Alkanoic acid C17; n-Alkanoic acid C18; n-Alkanoic acid C18, d13C; n-Alkanoic acid C19; n-Alkanoic acid C20; n-Alkanoic acid C20, d13C; n-Alkanoic acid C21; n-Alkanoic acid C22; n-Alkanoic acid C22, d13C; n-Alkanoic acid C23; n-Alkanoic acid C24; n-Alkanoic acid C24, d13C; n-Alkanoic acid C24, d13C, standard deviation; n-Alkanoic acid C25; n-Alkanoic acid C25, d13C; n-Alkanoic acid C26; n-Alkanoic acid C26, d13C; n-Alkanoic acid C26, d13C, standard deviation; n-Alkanoic acid C27; n-Alkanoic acid C27, d13C; n-Alkanoic acid C28; n-Alkanoic acid C28, d13C; n-Alkanoic acid C28, d13C, standard deviation; n-Alkanoic acid C29; n-Alkanoic acid C29, d13C; n-Alkanoic acid C30; n-Alkanoic acid C30, d13C; n-Alkanoic acid C30, d13C, standard deviation; n-Alkanoic acid C31; n-Alkanoic acid C31, d13C; n-Alkanoic acid C32; n-Alkanoic acid C32, d13C; n-Alkanoic acid C32, d13C, standard deviation; n-Alkanoic acid C33; n-Alkanoic acid C33, d13C; n-Alkanoic acid C34; n-Alkanoic acid C34, d13C; n-Alkanoic acid C34, d13C, standard deviation; n-Alkanoic acid C35; n-Alkanoic acid C36; n-Alkanoic acids; n-C16-ol; n-C18-ol; n-C18-ol d13C; n-C22-ol d13C; n-C23-ol; n-C24-ol; n-C24-ol d13C; n-C25-ol; n-C26-ol; n-C26-ol d13C; n-C27-ol; n-C28-ol; n-C28-ol d13C; n-C29-ol; n-C30-ol; n-C30-ol d13C; n-C31-ol; n-C32-ol; n-C32-ol d13C; n-C33-ol; n-C34-ol; n-C34-ol d13C; n-C35-ol; n-C36-ol; OC; P aq; Q; Rating curve and Acoustic Doppler Current Profiling (ADCP); River discharge; s n-alc (26-36); s n-alk (25-35); Standard deviation; Std dev; Sum Alk. Acid C26-C36; Sum LC, 26-36; Sum n-alcohol C26-C36; Sum n-alkanes C25-C35; Sum n-Alkanoic acids C26-C36; Suspended matter, total; Thermo Trace GC - Finnigan MAT 252 (GC/IR-MS); TOC; TSM; TSS, total suspended sediment; vs. VPDB
Tipo

Dataset