970 resultados para Functionality
Resumo:
Australian agriculture is faced with the dilemma of increasing food production for a growing domestic and world population while decreasing environmental impacts and supporting the social and economic future of regional communities. The challenge for farmers is compounded by declining rates of productivity growth which have been linked to changes in climate and decreasing investment in agricultural research. The answer must lie in understanding the ecological functionality of landscapes and matching management of agricultural systems and use of natural resources to landscape capacity in a changing climate. A simplified mixed grain and livestock farm case study is used to illustrate the challenges of assessing the potential for shifts in land allocation between commodities to achieve sustainable intensification of nutrition production. This study highlights the risks associated with overly-simplistic solutions and the need for increased investment in research to inform the development of practical strategies for increasing food production in Australian agro-ecosystems while managing the impacts of climate change and addressing climate change mitigation policies.
Resumo:
Mesenchymal stem cells (MSCs) are multi-potent cells that can differentiate into various cell types and have been used widely in tissue engineering application. In tissue engineering, a scaffold, MSCs and growth factors are used as essential components and their interactions have been regarded to be important for regeneration of tissues. A critical problem for MSCs in tissue engineering is their low survival ability and functionality. Most MSCs are going to be apoptotic after transplantation. Therefore, increasing MSC survival ability and functionalities is the key for potential applications of MSCs. Several approaches have been studied to increase MSC tissue forming capacity including application of growth factors, overexpression of stem cell regulatory genes and improvement of biomaterials for scaffolds. The effects of these approaches on MSCs have been associated with the activation of the PI3K/Akt signaling pathway. The pathway plays central regulatory roles in MSC survival, proliferation, migration, angiogenesis, cytokine production and differentiation. In this review, we summarize and discuss the literatures related to the roles of the PI3K/Akt pathway in the functionalities of MSCs and the involvement of the pathway in biomaterials-increased MSC functinalities. Biomaterials have been modified in their properties, surface structure and loaded with growth factors to increase MSC functionalities. Several studies demonstrated that the biomaterials-increased MSC functionalities are mediated by the activation of the PI3K/Akt pathway.
Resumo:
This report describes the available functionality and use of the ClusterEval evaluation software. It implements novel and standard measures for the evaluation of cluster quality. This software has been used at the INEX XML Mining track and in the MediaEval Social Event Detection task.
Resumo:
Background The largest proportion of cancer patients are aged 65 years and over. Increasing age is also associated with nutritional risk and multi-morbidities—factors which complicate the cancer treatment decision-making process in older patients. Objectives To determine whether malnutrition risk and Body Mass Index (BMI) are associated with key oncogeriatric variables as potential predictors of chemotherapy outcomes in geriatric oncology patients with solid tumours. Methods In this longitudinal study, geriatric oncology patients (aged ≥65 years) received a Comprehensive Geriatric Assessment (CGA) for baseline data collection prior to the commencement of chemotherapy treatment. Malnutrition risk was assessed using the Malnutrition Screening Tool (MST) and BMI was calculated using anthropometric data. Nutritional risk was compared with other variables collected as part of standard CGA. Associations were determined by chi-square tests and correlations. Results Over half of the 175 geriatric oncology patients were at risk of malnutrition (53.1%) according to MST. BMI ranged from 15.5–50.9kg/m2, with 35.4% of the cohort overweight when compared to geriatric cutoffs. Malnutrition risk was more prevalent in those who were underweight (70%) although many overweight participants presented as at risk (34%). Malnutrition risk was associated with a diagnosis of colorectal or lung cancer (p=0.001), dependence in activities of daily living (p=0.015) and impaired cognition (p=0.049). Malnutrition risk was positively associated with vulnerability to intensive cancer therapy (rho=0.16, p=0.038). Larger BMI was associated with a greater number of multi-morbidities (rho =.27, p=0.001. Conclusions Malnutrition risk is prevalent among geriatric patients undergoing chemotherapy, is more common in colorectal and lung cancer diagnoses, is associated with impaired functionality and cognition and negatively influences ability to complete planned intensive chemotherapy.
Resumo:
Many software applications extend their functionality by dynamically loading executable components into their allocated address space. Such components, exemplified by browser plugins and other software add-ons, not only enable reusability, but also promote programming simplicity, as they reside in the same address space as their host application, supporting easy sharing of complex data structures and pointers. However, such components are also often of unknown provenance and quality and may be riddled with accidental bugs or, in some cases, deliberately malicious code. Statistics show that such component failures account for a high percentage of software crashes and vulnerabilities. Enabling isolation of such fine-grained components is therefore necessary to increase the stability, security and resilience of computer programs. This thesis addresses this issue by showing how host applications can create isolation domains for individual components, while preserving the benefits of a single address space, via a new architecture for software isolation called LibVM. Towards this end, we define a specification which outlines the functional requirements for LibVM, identify the conditions under which these functional requirements can be met, define an abstract Application Programming Interface (API) that encompasses the general problem of isolating shared libraries, thus separating policy from mechanism, and prove its practicality with two concrete implementations based on hardware virtualization and system call interpositioning, respectively. The results demonstrate that hardware isolation minimises the difficulties encountered with software based approaches, while also reducing the size of the trusted computing base, thus increasing confidence in the solution’s correctness. This thesis concludes that, not only is it feasible to create such isolation domains for individual components, but that it should also be a fundamental operating system supported abstraction, which would lead to more stable and secure applications.
Resumo:
This paper presents an approach to assess the resilience of a water supply system under the impacts of climate change. Changes to climate characteristics such as rainfall, evapotranspiration and temperature can result in changes to the global hydrological cycle and thereby adversely impact on the ability of water supply systems to meet service standards in the future. Changes to the frequency and characteristics of floods and droughts as well as the quality of water provided by groundwater and surface water resources are the other consequences of climate change that will affect water supply system functionality. The extent and significance of these changes underline the necessity for assessing the future functionality of water supply systems under the impacts of climate change. Resilience can be a tool for assessing the ability of a water supply system to meet service standards under the future climate conditions. The study approach is based on defining resilience as the ability of a system to absorb pressure without going into failure state as well as its ability to achieve an acceptable level of function quickly after failure. In order to present this definition in the form of a mathematical function, a surrogate measure of resilience has been proposed in this paper. In addition, a step-by-step approach to estimate resilience of water storage reservoirs is presented. This approach will enable a comprehensive understanding of the functioning of a water storage reservoir under future climate scenarios and can also be a robust tool to predict future challenges faced by water supply systems under the consequence of climate change.
Resumo:
In an attempt to deal with the potential problems presented by existing information systems, a shift towards the implementation of ERP packages has been witnessed. The common view, particularly the one espoused by vendors, is that ERP packages are most successfully implemented when the standard model is adopted. Yet, despite this, customisation activity still occurs reportedly due to misalignment between the functionality of the package and the requirements of those in the implementing organisation. However, it is recognised that systems development and organisational decision-making are activities influenced by the perspectives of the various groups and individuals involved in the process. Thus, as customisation can be seen as part of systems development, and has to be decided upon, it should be thought about in the same way. In this study, two ERP projects are used to examine different reasons why customisation might take place. These reasons are then built upon through reference to the ERP and more general packaged software literature. The study suggests that whilst a common reason for customising ERP packages might be concerned with functionality misfits, it is important to look further into why these may occur, as there are clearly other reasons for customisation stemming from the multiplicity of social groups involved in the process.
Resumo:
Recent literature has emphasized the pivotal role of knowledge integration in Enterprise Systems (ES) success. This research-in-progress paper, building upon Knowledge Based Theory of the firm (KBT), examines the efficiency of knowledge integration in the context of ES implementation and identifies the factors contributing to its enhancement. The proposed model in this paper suggests that the efficiency of knowledge integration in an ES implementation process depends upon the level of common knowledge and the level of coordination in the ES adopting organization. It further suggests that the level of common knowledge can be enhanced by proper training, improving ES users’intrinsic and extrinsic motivations and business process modeling and the level of coordination can be improved by articulating a clear unified organizational goal for the ES adoption in the organization, forming a competent ES team, enhancing interdepartmental communication and the cross-functionality in the organization structure.
Resumo:
The YAWL Worklet Service is an effective approach to facilitating dynamic flexibility and exception handling in workflow processes. Recent additions to the Service extend its capabilities through a programming interface that provides easier access to rules storage and evaluation, and an event server that notifies listening servers and applications when exceptions are detected, which together serve enhance the functionality and accessibility of the Service's features and expand its usability to new potential domains.
Resumo:
Increases in functionality, power and intelligence of modern engineered systems led to complex systems with a large number of interconnected dynamic subsystems. In such machines, faults in one subsystem can cascade and affect the behavior of numerous other subsystems. This complicates the traditional fault monitoring procedures because of the need to train models of the faults that the monitoring system needs to detect and recognize. Unavoidable design defects, quality variations and different usage patterns make it infeasible to foresee all possible faults, resulting in limited diagnostic coverage that can only deal with previously anticipated and modeled failures. This leads to missed detections and costly blind swapping of acceptable components because of one’s inability to accurately isolate the source of previously unseen anomalies. To circumvent these difficulties, a new paradigm for diagnostic systems is proposed and discussed in this paper. Its feasibility is demonstrated through application examples in automotive engine diagnostics.
Resumo:
Whilst alcohol is a common feature of many social gatherings, there are numerous immediate and long-term health and social harms associated with its abuse. Alcohol consumption is the world’s third largest risk factor for disease and disability with almost 4% of all deaths worldwide attributed to alcohol. Not surprisingly, alcohol use and binge drinking by young people is of particular concern with Australian data reporting that 39% of young people (18-19yrs) admitted drinking at least weekly and 32% drank to levels that put them at risk of alcohol-related harm. The growing market penetration and connectivity of smartphones may be an opportunities for innovation in promoting health-related self-management of substance use. However, little is known about how best to harness and optimise this technology for health-related intervention and behaviour change. This paper explores the utility and interface of smartphone technology as a health intervention tool to monitor and moderate alcohol use. A review of the psychological health applications of this technology will be presented along with the findings of a series of focus groups, surveys and behavioural field trials of several drink-monitoring applications. Qualitative and quantitative data will be presented on the perceptions, preferences and utility of the design, usability and functionality of smartphone apps to monitoring and moderate alcohol use. How these findings have shaped the development and evolution of the OnTrack app will be specifically discussed, along with future directions and applications of this technology in health intervention, prevention and promotion.
Resumo:
Migraine is a common neurological disorder with a significantly heritable component. It is a complex disease and despite numerous molecular genetic studies, the exact pathogenesis causing the neurological disturbance remains poorly understood. Although several known molecular mechanisms have been associated with an increased risk for developing migraine, there remains significant scope for future studies. The majority of studies have investigated the most plausible candidate genes involved in common migraine pathogenesis utilising criteria that takes into account a combination of physiological functionality in conjunction with regions of genomic association. Thus, far genes involved in neurological, vascular or hormonal pathways have been identified and investigated on this basis. Genome-wide association studies (GWAS) studies have helped to identify novel regions that may be associated with migraine and have aided in providing the basis for further molecular investigations. However, further studies utilising sequencing technologies are required to characterise the genetic basis for migraine.
Resumo:
Background Hyperhomocysteinemia as a consequence of the MTHFR 677 C > T variant is associated with cardiovascular disease and stroke. Another factor that can potentially contribute to these disorders is a depleted nitric oxide level, which can be due to the presence of eNOS +894 G > T and eNOS −786 T > C variants that make an individual more susceptible to endothelial dysfunction. A number of genotyping methods have been developed to investigate these variants. However, simultaneous detection methods using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis are still lacking. In this study, a novel multiplex PCR-RFLP method for the simultaneous detection of MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants was developed. A total of 114 healthy Malay subjects were recruited. The MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants were genotyped using the novel multiplex PCR-RFLP and confirmed by DNA sequencing as well as snpBLAST. Allele frequencies of MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C were calculated using the Hardy Weinberg equation. Methods The 114 healthy volunteers were recruited for this study, and their DNA was extracted. Primer pair was designed using Primer 3 Software version 0.4.0 and validated against the BLAST database. The primer specificity, functionality and annealing temperature were tested using uniplex PCR methods that were later combined into a single multiplex PCR. Restriction Fragment Length Polymorphism (RFLP) was performed in three separate tubes followed by agarose gel electrophoresis. PCR product residual was purified and sent for DNA sequencing. Results The allele frequencies for MTHFR 677 C > T were 0.89 (C allele) and 0.11 (T allele); for eNOS +894 G > T, the allele frequencies were 0.58 (G allele) and 0.43 (T allele); and for eNOS −786 T > C, the allele frequencies were 0.87 (T allele) and 0.13 (C allele). Conclusions Our PCR-RFLP method is a simple, cost-effective and time-saving method. It can be used to successfully genotype subjects for the MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants simultaneously with 100% concordance from DNA sequencing data. This method can be routinely used for rapid investigation of the MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants.
Resumo:
We have identified a migraine locus on chromosome 19p13.3/2 using linkage and association analysis. We isolated 48 single-nucleotide polymorphisms within the locus, of which we genotyped 24 in a Caucasian population comprising 827 unrelated cases and 765 controls. Five single-nucleotide polymorphisms within the insulin receptor gene showed significant association with migraine. This association was independently replicated in a case-control population collected separately. We used experiments with insulin receptor RNA and protein to investigate functionality for the migraine-associated single-nucleotide polymorphisms. We suggest possible functions for the insulin receptor in migraine pathogenesis.
Resumo:
This thesis is aimed at further understanding the uppermost lipid-filled membranous layer (i.e. surface amorphous layer (SAL)) of articular cartilage and to develop a scientific framework for re-introducing lipids onto the surface of lipid-depleted articular cartilage (i.e. "resurfacing"). The outcome will potentially contribute to knowledge that will facilitate the repair of the articular surface of cartilage where degradation is limited to the loss of the lipids of the SAL only. The surface amorphous layer is of utmost importance to the effective load-spreading, lubrication, and semipermeability (which controls its fluid management, nutrient transport and waste removal) of articular cartilage in the mammalian joints. However, because this uppermost layer of cartilage is often in contact during physiological function, it is prone to wear and tear, and thus, is the site for damage initiation that can lead to the early stages of joint condition like osteoarthritis, and related conditions that cause pain and discomfort leading to low quality of life in patients. It is therefore imperative to conduct a study which offers insight into remedying this problem. It is hypothesized that restoration (resurfacing) of the surface amorphous layer can be achieved by re-introducing synthetic surface-active phospholipids (SAPL) into the joint space. This hypothesis was tested in this thesis by exposing cartilage samples whose surface lipids had been depleted to individual and mixtures of synthetic saturated and unsaturated phospholipids. The surfaces of normal, delipidized, and relipidized samples of cartilage were characterized for their structural integrity and functionality using atomic force microscope (AFM), confocal microscope (COFM), Raman spectroscopy, magnetic resonance imaging (MRI) with image processing in the MATLAB® environment and mechanical loading experiments. The results from AFM imaging, confocal microscopy, and Raman spectroscopy revealed a successful deposition of new surface layer on delipidized cartilage when incubated in synthetic phospholipids. The relipidization resulted in a significant improvement in the surface nanostructure of the artificially degraded cartilage, with the complete SAPL mixture providing better outcomes in comparison to those created with the single SAPL components (palmitoyl-oleoyl-phosphatidylcholine, POPC and dipalmitoyl-phosphatidylcholine, DPPC). MRI analysis revealed that the surface created with the complete mixture of synthetic lipids was capable of providing semipermeability to the surface layer of the treated cartilage samples relative to the normal intact surface. Furthermore, deformation energy analysis revealed that the treated samples were capable of delivering the elastic properties required for load bearing and recovery of the tissue relative to the normal intact samples, with this capability closer between the normal and the samples incubated in the complete lipid mixture. In conclusion, this thesis has established that it is possible to deposit/create a potentially viable layer on the surface of cartilage following degradation/lipid loss through incubation in synthetic lipid solutions. However, further studies will be required to advance the ideas developed in this thesis, for the development of synthetic lipid-based injections/drugs for treatment of osteoarthritis and other related joint conditions.