980 resultados para Finite Abelian P-Groups
Resumo:
O objetivo deste artigo ?? ampliar o conhecimento atual sobre os processos de aprendizado na implementa????o de pol??ticas p??blicas, procurando entender, em especial, os aspectos pol??ticos envolvidos nesses processos e como eles influenciam a evolu????o e os resultados dessas pol??ticas. Nesse sentido, com base em estudos de casos realizados sobre as pol??ticas industriais implementadas pelos estados da Bahia, do Cear?? e de Pernambuco nas ??ltimas d??cadas, conclui-se que o aprendizado de indiv??duos e grupos isoladamente dentro dos governos n??o parece garantir um efetivo aprendizado do governo na implementa????o de suas pol??ticas. Nos casos estudados, o aprendizado organizacional mostra-se como um processo no qual aspectos pol??ticos e cognitivos interagem sob as restri????es de arranjos institucionais espec??ficos. Esses aspectos pol??ticos tanto podem filtrar, retardar e at?? mesmo impedir a assimila????o organizacional do aprendizado de indiv??duos ou de grupos, como, outras vezes, podem aceler??-lo.
Resumo:
No per??odo de 2004 a 2008, o Minist??rio da Sa??de, conveniado com institui????es de ensino superior, ofereceu aos servidores dos n??cleos estaduais da sa??de um curso de especializa????o sobre Planejamento Estrat??gico e Pol??ticas P??blicas com o objetivo de informar, esclarecer e discutir o Sistema ??nico de Sa??de (SUS). A pesquisa discute esse programa educacional enquanto estrat??gia de mudan??a de cultura organizacional no Sistema ??nico de Sa??de. Dois dos principais focos do programa educacional foram a compreens??o dos pressupostos filos??ficos do SUS pelos funcion??rios do Minist??rio da Sa??de e a transforma????o do conhecimento t??cito dos servidores em conhecimento sistematizado via elabora????o de monografias, na perspectiva da incorpora????o de uma nova vis??o sobre o SUS. Foi utilizada abordagem metodol??gica quali-quantitativa, com uso de question??rios, entrevistas e grupos focais com os 636 respondentes que participaram do curso. A an??lise dos resultados considerou a avalia????o que os servidores/alunos faziam do curso, suas expectativas, suas necessidades de reconhecimento do trabalho e de satisfa????o pessoal, e a monografia realizada. Os resultados indicam a ocorr??ncia de aprendizagem e sensibiliza????o para as mudan??as; no entanto, no n??vel individual fatores organizacionais como a participa????o, comunica????o, reconhecimento de compet??ncias e pr??ticas de Recursos Humanos foram mencionados como entraves para o aprendizado e modifica????o da cultura organizacional. Conclui-se que os processos de aprendizagem desenvolvidos pela organiza????o devem ser processos continuados e n??o estrat??gias de a????o pontuais.
Resumo:
Formaldehyde, also known as formalin, formal and methyl aldehydes, is a colorless, flammable, strong-smelling gas. It has an important application in embalming tissues and that result in exposures for workers in the pathology anatomy laboratories and mortuaries. To perform exposure assessment is necessary define exposure groups and in this occupational setting the technicians and pathologists are the most important groups. In the case of formaldehyde, it seems that health effects are more related with peak exposures than with exposure duration.
Resumo:
The main properties of strangelets, namely their energy per baryon, radius and electric charge, are studied in the unpaired magnetized strange quark matter (MSQM) and paired magnetized colour flavour locked (MCFL) phases. Temperature effects are taken into account in order to study their stability compared to the Fe-56 isotope and nonmagnetized strangelets within the framework of the MIT bag model. We conclude that the presence of a magnetic field tends to stabilize the strangelets more, even when temperature is considered. It is also shown that MCFL strangelets are more stable than ordinary MSQM strangelets for typical gap values of the order of O(100) MeV. A distinctive feature in the detection of strangelets either in cosmic rays or in heavy-ion collider experiments could be their electric charge. We find that the electric charge is modified in the presence of the magnetic field, leading to higher (lower) charge values for MSQM (MCFL) strangelets, when compared to the nonmagnetized case.
Resumo:
We classify all possible implementations of an Abelian symmetry in the two-Higgs-doublet model with fermions. We identify those symmetries which are consistent with nonvanishing quark masses and a Cabibbo-Kobayashi-Maskawa quark-mixing matrix (CKM), which is not block-diagonal. Our analysis takes us from a plethora of possibilities down to 246 relevant cases, requiring only 34 distinct matrix forms. We show that applying Z(n) with n >= 4 to the scalar sector leads to a continuous U(1) symmetry in the whole Lagrangian. Finally, we address the possibilities of spontaneous CP violation and of natural suppression of the flavor-changing neutral currents. We explain why our work is relevant even for non-Abelian symmetries.
Finite element studies of the mechanical behaviour of the diaphragm in normal and pathological cases
Resumo:
The diaphragm is a muscular membrane separating the abdominal and thoracic cavities, and its motion is directly linked to respiration. In this study, using data from a 59-year-old female cadaver obtained from the Visible Human Project, the diaphragm is reconstructed and, from the corresponding solid object, a shell finite element mesh is generated and used in several analyses performed with the ABAQUS 6.7 software. These analyses consider the direction of the muscle fibres and the incompressibility of the tissue. The constitutive model for the isotropic strain energy as well as the passive and active strain energy stored in the fibres is adapted from Humphrey's model for cardiac muscles. Furthermore, numerical results for the diaphragmatic floor under pressure and active contraction in normal and pathological cases are presented.
Resumo:
Functionally graded materials are composite materials wherein the composition of the constituent phases can vary in a smooth continuous way with a gradation which is function of its spatial coordinates. This characteristic proves to be an important issue as it can minimize abrupt variations of the material properties which are usually responsible for localized high values of stresses, and simultaneously providing an effective thermal barrier in specific applications. In the present work, it is studied the static and free vibration behaviour of functionally graded sandwich plate type structures, using B-spline finite strip element models based on different shear deformation theories. The effective properties of functionally graded materials are estimated according to Mori-Tanaka homogenization scheme. These sandwich structures can also consider the existence of outer skins of piezoelectric materials, thus achieving them adaptive characteristics. The performance of the models, are illustrated through a set of test cases. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This work describes the synthesis and characterization of a series of new α-diimine and P,O, β-keto and acetamide phosphines ligands, and their complexation to Ni(II), Co(II),Co(III) and Pd(II) to obtain a series of new compounds aiming to study their structural characteristics and to test their catalytic activity. All the compounds synthesized were characterized by the usual spectroscopic and spectrometric techniques: Elemental Analysis, MALDI-TOF-MS spectrometry, IR, UV-vis, 1H, 13C and 31P NMR spectroscopies. Some of the paramagnetic compounds were also characterized by EPR. For the majority of the compounds it was possible to solve their solid state structure by single crystal X-ray diffraction. Tests for olefin polymerization were performed in order to determine the catalytic activity of the Co(II) complexes. Chapter I presents a brief introduction to homogenous catalysis, highlighting the reactions catalyzed by the type of compounds described in this thesis, namely olefin polymerization and oligomerization and reactions catalyzed by the complexes bearing α-diimines and P,O type ligands. Chapter II is dedicated to the description of the synthesis of new α-diimines cobalt (II) complexes, of general formula [CoX2(α-diimine)], where X = Cl or I and the α-diimines are bis(aryl)acenaphthenequinonediimine) (Ar-BIAN) and 1,4-diaryl-2,3-dimethyl-1,4-diaza-1,3-butadiene (Ar-DAB). Structures solved by single crystal X-ray diffraction were obtained for all the described complexes. For some of the compounds, X-band EPR measurements were performed on polycrystalline samples, showing a high-spin Co(II) (S = 3/2) ion, in a distorted axial environment. EPR single crystal experiments on two of the compounds allowed us to determine the g tensor orientation in the molecular structure. In Chapter III we continue with the synthesis and characterization of more cobalt (II)complexes bearing α-diimines of general formula [CoX2(α-diimine)], with X = Cl or I and α-diimines are bis(aryl)acenaphthenequinonediimine) (Ar-BIAN) and 1,4-diaryl-2,3-dimethyl- 1,4-diaza-1,3-butadiene (Ar-DAB). The structures of three of the new compounds synthesized were determined by single crystal X-ray diffraction. A NMR paramagnetic characterization of all the compounds described is presented. Ethylene polymerization tests were done to determine the catalytic activity of several of the Co(II) complexes described in Chapter II and III and their results are shown. In Chapter IV a new rigid bidentate ligand, bis(1-naphthylimino)acenaphthene, and its complexes with Zn(II) and Pd(II), were synthesized. Both the ligand and its complexes show syn and anti isomers. Structures of the ligand and the anti isomer of the Pd(II) complex were solved by single crystal X-ray diffraction. All the compounds were characterized by elemental analysis, MALDI-TOF-MS spectrometry, and by IR, UV-vis, 1H, 13C, 1H-1H COSY, 1H-13C HSQC, 1H-13C HSQC-TOCSY and 1H-1H NOESY NMR when necessary. DFT studies showed that both conformers of [PdCl2(BIAN)] are isoenergetics and can be obtain experimentally. However, we can predict that the isomerization process is not available in square-planar complex, but is possible for the free ligand. The molecular geometry is very similar in both isomers, and only different orientations for naphthyl groups can be expected. Chapter V describes the synthesis of new P, O type ligands, β-keto phosphine, R2PCH2C(O)Ph, and acetamide phosphine R2PNHC(O)Me, as well as a series of new cobalt(III) complexes namely [(η5-C5H5)CoI2{Ph2PCH2C(O)Ph}], and [(η5- C5H5)CoI2{Ph2PNHC(O)Me}]. Treating these Co(III) compounds with an excess of Et3N, resulted in complexes η2-phosphinoenolate [(η5-C5H5)CoI{Ph2PCH…C(…O)Ph}] and η2- acetamide phosphine [(η5-C5H5)CoI{Ph2PN…C(…O)Me}]. Nickel (II) complexes were also obtained: cis-[Ni(Ph2PN…C(…O)Me)2] and cis-[Ni((i-Pr)2PN…C(…O)Me)2]. Their geometry and isomerism were discussed. Seven structures of the compounds described in this chapter were determined by single crystal X-ray diffraction. The general conclusions of this work can be found in Chapter VI.
Resumo:
Adhesive-bonding for the unions in multi-component structures is gaining momentum over welding, riveting and fastening. It is vital for the design of bonded structures the availability of accurate damage models, to minimize design costs and time to market. Cohesive Zone Models (CZM’s) have been used for fracture prediction in structures. The eXtended Finite Element Method (XFEM) is a recent improvement of the Finite Element Method (FEM) that relies on traction-separation laws similar to those of CZM’s but it allows the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom. This work proposes and validates a damage law to model crack propagation in a thin layer of a structural epoxy adhesive using the XFEM. The fracture toughness in pure mode I (GIc) and tensile cohesive strength (sn0) were defined by Double-Cantilever Beam (DCB) and bulk tensile tests, respectively, which permitted to build the damage law. The XFEM simulations of the DCB tests accurately matched the experimental load-displacement (P-d) curves, which validated the analysis procedure.
Resumo:
Antioneoplastic drugs are widely used in treatment of cancer, and several studies suggest acute and long-term effects associated to antineoplastic drug exposures, namely associating workplace exposure with health effects. Cytokinesis blocked micronucleus (CBMN) assay is one promising short-term genotoxicity assays for human risk assessment and their combination is recommended to monitor populations chronically exposed to genotoxic agents. The aim of this investigation is the genotoxicity assessment in different professionals that handle cytostatics drugs. This research is case-control blinded study constituted by 46 non-exposed subjects and 44 workers that handle antineoplastic drugs, such as pharmacists, pharmacy technicians, and nurses. It was found statistically significant increases in the genotoxicity biomarkers in exposed comparising with controls (p<0.05). The findings address the need for regular biomonitoring of personnel occupationally exposed to these drugs, confirming to an enhanced health risk assessment.
Resumo:
The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single- and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.
Resumo:
We have conducted a P and S receiver functions [PRFs and SRFs] analysis for 19 seismic stations on the Iberia and western Mediterranean. In the transition zone [TZ] the PRFs analysis reveals a band [from Gibraltar to Balearic] increased by 10-20 km relative to the standard 250 km. The TZ thickness variations are strongly correlated with the P660s times in PRFs. We interpret the variable depth of the 660-km discontinuity as an effect of subduction. Over the anomalous TZ we found a reduced velocity zone in the upper mantle. Joint inversion of PRFs and SRFs reveals a subcrustal high S velocity lid and an underlying LVZ. A reduction of the S velocity in the LVZ is less than 10%. The Gutenberg discontinuity is located at 65±5 km, but in several models sampling the Mediterranean, the lid is missing or its thickness is reduced to ~30 km. In the Gibraltar and North Africa this boundary is located at ~100 km. The lid Vp/Vs beneath Betics is reduced relative to the standard 1.8. Another evidence of the Vp/Vs anomaly is provided by S410p phase late arrivals in the SRFs. The azimuthal anisotropy analysis with a new technology was conducted at 5 stations and at 2 groups of stations. The fast direction in the uppermost mantle layer is ~90º in Iberian Massif. In Balearic is in the azimuth of ~120º. At a depth of ~60 km the direction becomes 90º. Anisotropy in the upper layer can be interpreted as frozen, whereas anisotropy in the lower layer is active, corresponding to the present-day or recent flow. The effect of the asthenosphere in the SKS splitting is much larger than the effect of the subcrustal lithosphere.
Resumo:
HLA antigens and their relationship with malaria infection were studied in four different ethnic groups in Colombia (South America): two groups of indians (Kunas and Katios), one of negroes and a group of mixed ancestry. A total of 965 persons were studied, 415 with malaria and 550 as controls. HLA-A,B, and C antigen frequencies in the four groups are reported. The association of each HLA antigen with malaria infection due to P. vivax and to P. falciparum was evaluated. Negroes, Kunas and Katios indians variously lack from 6 to 9 of the HLA antigens found in the mixed group. In the designated ethnic groups, antigens B5, B13, B15, Cw2 and Cw4 showed borderline association with malaria infection. However, in the mixed ethnic group, statistically significant associations were found with malaria infection and the presence of A9, Aw19, B17, B35, and Z98 (a B21-B45: crossreacting determinant) with few differences when P. vivax infection and P. falciparum infection were considered individually. This finding may represent a lack of general resistance to malaria in the group that harbors antigens of Caucasian origin. These individuals have been in direct and permanent contact with malaria only in the past 65 years. In contrast, indians, both Kunas and Katios, and Negroes have lived for centuries in malaria endemic areas, and it is possible that a natural selection system has developed through which only those individuals able to initiate an acute immune response to malaria have survived.
Resumo:
The aim of this study is to optimize the heat flow through the pultrusion die assembly system on the manufacturing process of a specific glass-fiber reinforced polymer (GFRP) pultrusion profile. The control of heat flow and its distribution through whole die assembly system is of vital importance in optimizing the actual GFRP pultrusion process. Through mathematical modeling of heating-die process, by means of Finite Element Analysis (FEA) program, an optimum heater selection, die position and temperature control was achieved. The thermal environment within the die was critically modeled relative not only to the applied heat sources, but also to the conductive and convective losses, as well as the thermal contribution arising from the exothermic reaction of resin matrix as it cures or polymerizes from the liquid to solid condition. Numerical simulation was validated with basis on thermographic measurements carried out on key points along the die during pultrusion process.
Resumo:
Journal of Algebra, 321 (2009), p. 743–757