939 resultados para EQUAÇÕES DIFERENCIAIS PARCIAIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O processo de extração de metais em membrana polimérica é analisado empregando o método das Linhas-Gear nas equações diferenciais resultantes da modelagem matemática do problema físico. O estudo tem a finalidade de averiguar o comportamento das curvas de extração de metal extraído e a influência dos parâmetros físicos da membrana no processo de extração por membrana, e também analisar, a partir de um estudo paramétrico, a influência dos parâmetros mais importantes do processo, verificando-se assim se o processo de extração se encontra sob controle cinético ou difusivo. A modelagem do problema é realizada assumindo-se a extração dos metais cádmio, Cd (II), ouro, Au (lII), e Paládio, Pd (11) sobre a membrana difusiva polimérica Aliquat 336/PVC. Os resultados são então comparados com dados obtidos em trabalhos previamente reportados na literatura, concluindo-se que os mesmos são satisfatórios.
Resumo:
Este trabalho objetiva analisar os possíveis efeitos que o uso da Modelagem Matemática, enquanto estratégia de ensino, provoca no processo de aprendizagem dos alunos da disciplina Cálculo III – EDO (Equações Diferenciais Ordinárias). A pesquisa foi desenvolvida em uma turma de alunos do 2° ano do curso de Engenharia da Computação, na Universidade Federal do Pará. O trabalho é de cunho qualitativo onde foram levados em consideração os aspectos sociais que permeiam uma sala de aula universitária. Importante destacar que houve a participação direta da professora-pesquisadora de Matemática. Para que eu pudesse fazer a coleta dos dados, utilizei alguns instrumentos que considerei essenciais, tais como: observações, gravações em áudio, questionários semiestruturados e registros escritos dos alunos. De posse de alguns resultados preliminares, me foi possível observar o quanto a Modelagem Matemática desempenha um papel relevante na aprendizagem dos conteúdos matemáticos por parte dos alunos, pois foi possível eles interagirem com outras áreas do conhecimento sendo, desta forma, estimulados a realizarem pesquisa e, simultaneamente, serem parte do processo de ensino e aprendizagem que foi gerado no ambiente de sala de aula. Observei, também, que a utilização da Modelagem Matemática, enquanto estratégia de ensino e aprendizagem, conduziu os alunos a despertarem para os aspectos reflexivos e críticos até então adormecidos, uma vez que são necessários para uma aprendizagem com qualidade para, assim, construírem seus conhecimentos acadêmicos e profissionais.
Resumo:
A inversão de momentos de fonte gravimétrica tridimensional é analisada em duas situações. Na primeira se admite conhecer apenas a anomalia. Na segunda se admite conhecer, além da anomalia, informação a priori sobre o corpo anômalo. Sem usar informação a priori, mostramos que é possível determinar univocamente todo momento, ou combinação linear de momentos, cujo núcleo polinomial seja função apenas das coordenadas Cartesianas que definem o plano de medida e que tenha Laplaciano nulo. Além disso, mostramos que nenhum momento cujo núcleo polinomial tenha Laplaciano não nulo pode ser determinado. Por outro lado, informação a priori é implicitamente introduzida se o método de inversão de momentos se baseia na aproximação da anomalia pela série truncada obtida de sua expansão em multipolos. Dado um centro de expansão qualquer, o truncamento da série impõe uma condição de regularização sobre as superfícies equipotenciais do corpo anômalo, que permite estimar univocamente os momentos e combinações lineares de momentos que são os coeficientes das funções-bases da expansão em multipolos. Assim, uma distribuição de massa equivalente à real é postulada, sendo o critério de equivalência especificado pela condição de ajuste entre os campos observado e calculado com a série truncada em momentos de uma ordem máxima pré-estabelecida. Os momentos da distribuição equivalente de massa foram identificados como a solução estacionária de um sistema de equações diferenciais lineares de 1a. ordem, para a qual se asseguram unicidade e estabilidade assintótica. Para a série retendo momentos até 2a. ordem, é implicitamente admitido que o corpo anômalo seja convexo e tenha volume finito, que ele esteja suficientemente distante do plano de medida e que a sua distribuição espacial de massa apresente três planos ortogonais de simetria. O método de inversão de momentos baseado na série truncada (IMT) é adaptado para o caso magnético. Para este caso, mostramos que, para assegurar unicidade e estabilidade assintótica, é suficiente pressupor, além da condição de regularização, a condição de que a magnetização total tenha direção e sentido constantes, embora desconhecidos. O método IMT baseado na série de 2a. ordem (IMT2) é aplicado a anomalias gravimétricas e magnéticas tridimensionais sintéticas. Mostramos que se a fonte satisfaz as condições exigidas, boas estimativas da sua massa ou vetor momento de dipolo anômalo total, da posição de seu centro de massa ou de momento de dipolo e das direções de seus três eixos principais são obtidas de maneira estável. O método IMT2 pode falhar parcialmente quando a fonte está próxima do plano de medida ou quando a anomalia tem efeitos localizados e fortes de um corpo pequeno e raso e se tenta estimar os parâmetros de um corpo grande e profundo. Definimos por falha parcial a situação em que algumas das estimativas obtidas podem não ser boas aproximações dos valores verdadeiros. Nas duas situações acima descritas, a profundidade do centro da fonte (maior) e as direções de seus eixos principais podem ser erroneamente estimadas, embora que a massa ou vetor momento de dipolo anômalo total e a projeção do centro desta fonte no plano de medida ainda sejam bem estimados. Se a direção de magnetização total não for constante, o método IMT2 pode fornecer estimativas erradas das direções dos eixos principais (mesmo se a fonte estiver distante do plano de medida), embora que os demais parâmetros sejam bem estimados. O método IMT2 pode falhar completamente se a fonte não tiver volume finito. Definimos por falha completa a situação em que qualquer estimativa obtida pode não ser boa aproximação do valor verdadeiro. O método IMT2 é aplicado a dados reais gravimétricos e magnéticos. No caso gravimétrico, utilizamos uma anomalia situada no estado da Bahia, que se supõe ser causada por um batólito de granito. Com base nos resultados, sugerimos que as massas graníticas geradoras desta anomalia tenham sido estiradas na direção NNW e adelgaçadas na direção vertical durante o evento compressivo que causou a orogênese do Sistema de Dobramentos do Espinhaço. Além disso, estimamos que a profundidade do centro de massa da fonte geradora é cerca de 20 km. No caso magnético, utilizamos a anomalia de um monte submarino situado no Golfo da Guiné. Com base nos resultados, estimamos que o paleopolo magnético do monte submarino tem latitude 50°48'S e longitude 74°54'E e sugerimos que não exista contraste de magnetização expressivo abaixo da base do monte submarino.
Resumo:
O campo magnetotelúrico em regiões equatoriais viola a condição de ondas planas por causa de uma fonte fortemente concentrada na direção E-W na ionosfera, denominada eletrojato equatorial. No presente trabalho, procurou-se analisar a resposta magnetotelúrica de fontes que simulam o efeito do eletrojato equatorial. Foram considerados dois tipos de fontes para simular o eletrojato: uma linha infinita de corrente e uma distribuição gaussiana de densidade de corrente em relação a uma das coordenadas horizontais. A resistividade aparente foi obtida através da relação de Cagniard e comparada com os resultados de ondas planas. É mostrada também a comparação entre a fase da impedância na superfície, para os três tipos de fontes (ondas planas, eletrojato gaussiano e linha de corrente). O problema de meios com heterogeneidades laterais foi resolvido em termos de campos secundários, sendo as equações diferenciais solucionadas através da técnica de elementos finitos bidimensionais. Os resultados mostram que o eletrojato tem pouca influência nas respostas (resistividade aparente e fase) de estruturas geológicas rasas. Entretanto, a influência pode ser considerável nas estruturas profundas (maior que 5000 m), principalmente se suas resistividades são altas (maior que 100 Ω.m). Portanto, a influência do eletrojato equatorial deve ser considerada na interpretação de dados magnetotelúricos de bacias sedimentares profundas ou no estudo da crosta terrestre.
Resumo:
O presente trabalho tem como objetivo investigar o espalhamento das ondas planas causados pela variação lateral das propriedades físicas das rochas. Essa é uma das questões mais importante para o sucesso da exploração geofísica. O método geofísico usado nesta dissertação foi método magnetotelúrico (MT) e método Magnetotelúrico marinho (mMT). Umas das ferramentas utilizadas foram o método dos elementos finitos, este método é notável pela flexibilidade em resolver numericamente as equações diferenciais para campos eletromagnéticos secundários, gerados por estruturas geológicas com geometrias complexas, sendo utilizado para obter a solução numérica do espalhamento do campo eletromagnético da onda plana por um dique vertical (modelos bidimensionais). Os algoritmos desenvolvidos foram aplicados em diversos modelos de dique vertical, com diferentes parâmetros geoelétricos.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)