964 resultados para Deuteric fluids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a single imperfect fluid can be used as a source to obtain a mass-varying black hole in an expanding universe. This approach generalizes the well-known McVittie spacetime, by allowing the mass to vary thanks to a novel mechanism based on the presence of a temperature gradient. This fully dynamical solution, which does not require phantom fields or fine-tuning, is a step forward in a new direction in the study of systems whose local gravitational attraction is coupled to the expansion of the universe. We present a simple but instructive example for the mass function and briefly discuss the structure of the apparent horizons and the past singularity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports an experimental method to estimate the convective heat transfer of cutting fluids in a laminar flow regime applied on a thin steel plate. The heat source provided by the metal cutting was simulated by electrical heating of the plate. Three different cooling conditions were evaluated: a dry cooling system, a flooded cooling system and a minimum quantity of lubrication cooling system, as well as two different cutting fluids for the last two systems. The results showed considerable enhancement of convective heat transfer using the flooded system. For the dry and minimum quantity of lubrication systems, the heat conduction inside the body was much faster than the heat convection away from its surface. In addition, using the Biot number, the possible models were analyzed for conduction heat problems for each experimental condition tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the spherical accretion of generic fluids onto black holes. We show that, if the black hole metric satisfies certain conditions, in the presence of a test fluid it is possible to derive a fully relativistic prescription for the black hole mass variation. Although the resulting equation may seem obvious due to a form of it appearing as a step in the derivation of the Schwarzschild metric, this geometrical argument is necessary to fix the added degree of freedom one gets for allowing the mass to vary with time. This result has applications on cosmological accretion models and provides a derivation from first principles to serve as a basis to the accretion equations already in use in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of oil-in-water (O/W) emulsions used as metalworking fluids is a key factor for the economical and environmental balance of the entire metalworking process because used and broken fluids must be recycled or disposed. In this study, the ability of turbidimetric spectroscopy in the ultraviolet and visible light range to detect metalworking fluids destabilization was evaluated. Destabilization was achieved by adding calcium chloride, thus achieving accelerated aging, which leads to coalescence, creaming, and complete emulsion separation. The stability of the metalworking fluids at 5% volumetric concentration in deionized water was monitored using a spectroscopic turbidimeter composed of an optical probe for in-line measurements. Destabilization was also monitored by measuring the vertical profile of backscattered and transmitted light. The results of this offline measurement system were compared with those from the in-line spectroscopic sensor, indicating that the latter can provide local, real-time information on emulsion destabilization, thus enabling control actions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fetal tissues are frequently discarded before (amniocentesis) or after birth, which both facilitates stem cell access and helps to overcome ethical concerns. In the present study, we aimed to isolate and characterize stem cells from the allantoic and amniotic fluids (ALF; AMF) of third trimester canine fetuses. This gestation age has not been previously explored for stem cells isolation. The gestational age, cell culture conditions and method of isolation used in this study allowed for the establishment and efficient expansion of ALF and AMF cells. We showed that the majority of ALF and ALF cells express the stem cell markers, such as vimentin, nestin and cytokeratin 18 (CK18). Under appropriate culture conditions AMF derived cells can undergo differentiation into osteogenic, adipogenic, chondrogenic and neuron-like lineages. ALF derived cells showed adipogenic, and chondrogenic potential. Therefore, ALF and AMF cells derived at the third gestation trimester can be qualified as progenitor stem cells, accordingly referred as (alantoic fluid progenitor/stem) ALF PS cells and (amniotic fluid progenitor/stem) AMF PS cells. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During recent years a consistent number of central nervous system (CNS) drugs have been approved and introduced on the market for the treatment of many psychiatric and neurological disorders, including psychosis, depression, Parkinson disease and epilepsy. Despite the great advancements obtained in the treatment of CNS diseases/disorders, partial response to therapy or treatment failure are frequent, at least in part due to poor compliance, but also genetic variability in the metabolism of psychotropic agents or polypharmacy, which may lead to sub-therapeutic or toxic plasma levels of the drugs, and finally inefficacy of the treatment or adverse/toxic effects. With the aim of improving the treatment, reducing toxic/side effects and patient hospitalisation, Therapeutic Drug Monitoring (TDM) is certainly useful, allowing for a personalisation of the therapy. Reliable analytical methods are required to determine the plasma levels of psychotropic drugs, which are often present at low concentrations (tens or hundreds of nanograms per millilitre). The present PhD Thesis has focused on the development of analytical methods for the determination of CNS drugs in biological fluids, including antidepressants (sertraline and duloxetine), antipsychotics (aripiprazole), antiepileptics (vigabatrin and topiramate) and antiparkinsons (pramipexole). Innovative methods based on liquid chromatography or capillary electrophoresis coupled to diode-array or laser-induced fluorescence detectors have been developed, together with the suitable sample pre-treatment for interference removal and fluorescent labelling in case of LIF detection. All methods have been validated according to official guidelines and applied to the analysis of real samples obtained from patients, resulting suitable for the TDM of psychotropic drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer-Simulationen von Kolloidalen Fluiden in Beschränkten Geometrien Kolloidale Suspensionen, die einen Phasenübergang aufweisen, zeigen eine Vielfalt an interessanten Effekten, sobald sie auf eine bestimmte Geometrie beschränkt werden, wie zum Beispiel auf zylindrische Poren, sphärische Hohlräume oder auf einen Spalt mit ebenen Wänden. Der Einfluss dieser verschiedenen Geometrietypen sowohl auf das Phasenverhalten als auch auf die Dynamik von Kolloid-Polymer-Mischungen wird mit Hilfe von Computer-Simulationen unter Verwendung des Asakura-Oosawa- Modells, für welches auf Grund der “Depletion”-Kräfte ein Phasenübergang existiert, untersucht. Im Fall von zylindrischen Poren sieht man ein interessantes Phasenverhalten, welches vom eindimensionalen Charakter des Systems hervorgerufen wird. In einer kurzen Pore findet man im Bereich des Phasendiagramms, in dem das System typischerweise entmischt, entweder eine polymerreiche oder eine kolloidreiche Phase vor. Sobald aber die Länge der zylindrischen Pore die typische Korrelationslänge entlang der Zylinderachse überschreitet, bilden sich mehrere quasi-eindimensionale Bereiche der polymerreichen und der kolloidreichen Phase, welche von nun an koexistieren. Diese Untersuchungen helfen das Verhalten von Adsorptionshysteresekurven in entsprechenden Experimenten zu erklären. Wenn das Kolloid-Polymer-Modellsystem auf einen sphärischen Hohlraum eingeschränkt wird, verschiebt sich der Punkt des Phasenübergangs von der polymerreichen zur kolloidreichen Phase. Es wird gezeigt, dass diese Verschiebung direkt von den Benetzungseigenschaften des Systems abhängt, was die Beobachtung von zwei verschiedenen Morphologien bei Phasenkoexistenz ermöglicht – Schalenstrukturen und Strukturen des Janustyps. Im Rahmen der Untersuchung von heterogener Keimbildung von Kristallen innerhalb einer Flüssigkeit wird eine neue Simulationsmethode zur Berechnung von Freien Energien der Grenzfläche zwischen Kristall- bzw. Flüssigkeitsphase undWand präsentiert. Die Resultate für ein System von harten Kugeln und ein System einer Kolloid- Polymer-Mischung werden anschließend zur Bestimmung von Kontaktwinkeln von Kristallkeimen an Wänden verwendet. Die Dynamik der Phasenseparation eines quasi-zweidimensionalen Systems, welche sich nach einem Quench des Systems aus dem homogenen Zustand in den entmischten Zustand ausbildet, wird mit Hilfe von einer mesoskaligen Simulationsmethode (“Multi Particle Collision Dynamics”) untersucht, die sich für eine detaillierte Untersuchung des Einflusses der hydrodynamischen Wechselwirkung eignet. Die Exponenten universeller Potenzgesetze, die das Wachstum der mittleren Domänengröße beschreiben, welche für rein zwei- bzw. dreidimensionale Systeme bekannt sind, können für bestimmte Parameterbereiche nachgewiesen werden. Die unterschiedliche Dynamik senkrecht bzw. parallel zu den Wänden sowie der Einfluss der Randbedingungen für das Lösungsmittel werden untersucht. Es wird gezeigt, dass die daraus resultierende Abschirmung der hydrodynamischen Wechselwirkungsreichweite starke Auswirkungen auf das Wachstum der mittleren Domänengröße hat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical simulation of the Oldroyd-B type viscoelastic fluids is a very challenging problem. rnThe well-known High Weissenberg Number Problem" has haunted the mathematicians, computer scientists, and rnengineers for more than 40 years. rnWhen the Weissenberg number, which represents the ratio of elasticity to viscosity, rnexceeds some limits, simulations done by standard methods break down exponentially fast in time. rnHowever, some approaches, such as the logarithm transformation technique can significantly improve rnthe limits of the Weissenberg number until which the simulations stay stable. rnrnWe should point out that the global existence of weak solutions for the Oldroyd-B model is still open. rnLet us note that in the evolution equation of the elastic stress tensor the terms describing diffusive rneffects are typically neglected in the modelling due to their smallness. However, when keeping rnthese diffusive terms in the constitutive law the global existence of weak solutions in two-space dimension rncan been shown. rnrnThis main part of the thesis is devoted to the stability study of the Oldroyd-B viscoelastic model. rnFirstly, we show that the free energy of the diffusive Oldroyd-B model as well as its rnlogarithm transformation are dissipative in time. rnFurther, we have developed free energy dissipative schemes based on the characteristic finite element and finite difference framework. rnIn addition, the global linear stability analysis of the diffusive Oldroyd-B model has also be discussed. rnThe next part of the thesis deals with the error estimates of the combined finite element rnand finite volume discretization of a special Oldroyd-B model which covers the limiting rncase of Weissenberg number going to infinity. Theoretical results are confirmed by a series of numerical rnexperiments, which are presented in the thesis, too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal activity within the central nervous system (CNS) strictly depends on homeostasis and therefore does not tolerate uncontrolled entry of blood components. It has been generally believed that under normal conditions, the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) prevent immune cell entry into the CNS. This view has recently changed when it was realized that activated T cells are able to breach the BBB and the BCSFB to perform immune surveillance of the CNS. Here we propose that the immune privilege of the CNS is established by the specific morphological architecture of its borders resembling that of a medieval castle. The BBB and the BCSFB serve as the outer walls of the castle, which can be breached by activated immune cells serving as messengers for outside dangers. Having crossed the BBB or the BCSFB they reach the castle moat, namely the cerebrospinal fluid (CSF)-drained leptomeningeal and perivascular spaces of the CNS. Next to the CNS parenchyma, the castle moat is bordered by a second wall, the glia limitans, composed of astrocytic foot processes and a parenchymal basement membrane. Inside the castle, that is the CNS parenchyma proper, the royal family of sensitive neurons resides with their servants, the glial cells. Within the CSF-drained castle moat, macrophages serve as guards collecting all the information from within the castle, which they can present to the immune-surveying T cells. If in their communication with the castle moat macrophages, T cells recognize their specific antigen and see that the royal family is in danger, they will become activated and by opening doors in the outer wall of the castle allow the entry of additional immune cells into the castle moat. From there, immune cells may breach the inner castle wall with the aim to defend the castle inhabitants by eliminating the invading enemy. If the immune response by unknown mechanisms turns against self, that is the castle inhabitants, this may allow for continuous entry of immune cells into the castle and lead to the death of the castle inhabitants, and finally members of the royal family, the neurons. This review will summarize the molecular traffic signals known to allow immune cells to breach the outer and inner walls of the CNS castle moat and will highlight the importance of the CSF-drained castle moat in maintaining immune surveillance and in mounting immune responses in the CNS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the past two decades, chiral capillary electrophoresis (CE) emerged as a promising, effective and economic approach for the enantioselective determination of drugs and their metabolites in body fluids, tissues and in vitro preparations. This review discusses the principles and important aspects of CE-based chiral bioassays, provides a survey of the assays developed during the past 10 years and presents an overview of the key achievements encountered in that time period. Applications discussed encompass the pharmacokinetics of drug enantiomers in vivo and in vitro, the elucidation of the stereoselectivity of drug metabolism in vivo and in vitro, and bioanalysis of drug enantiomers of toxicological, forensic and doping interest. Chiral CE was extensively employed for research purposes to investigate the stereoselectivity associated with hydroxylation, dealkylation, carboxylation, sulfoxidation, N-oxidation and ketoreduction of drugs and metabolites. Enantioselective CE played a pivotal role in many biomedical studies, thereby providing new insights into the stereoselective metabolism of drugs in different species which might eventually lead to new strategies for optimization of pharmacotherapy in clinical practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contagious bovine pleuropneumonia (CBPP) is the most serious cattle disease in Africa, caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC). CBPP control strategies currently rely on vaccination with a vaccine based on live attenuated strains of the organism. Recently, an lppQ(-) mutant of the existing vaccine strain T1/44 has been developed (Janis et al., 2008). This T1lppQ(-) mutant strain is devoid of lipoprotein LppQ, a potential virulence attribute of M. mycoides subsp. mycoides SC. It is designated as a potential live DIVA (Differentiating Infected from Vaccinated Animals) vaccine strain allowing both serological and etiological differentiation. The present paper reports on the validation of a control strategy for CBPP in cattle, whereby a TaqMan real-time PCR based on the lppQ gene has been developed for the direct detection of M. mycoides subsp. mycoides SC in ex vivo bronchoalveolar lavage fluids of cows and for the discrimination of wild type strains from the lppQ(-) mutant vaccine strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale simulations of two-dimensional bidisperse granular fluids allow us to determine spatial correlations of slow particles via the four-point structure factor S-4 (q, t). Both cases, elastic (epsilon = 1) and inelastic (epsilon < 1) collisions, are studied. As the fluid approaches structural arrest, i.e., for packing fractions in the range 0.6 <= phi <= 0.805, scaling is shown to hold: S-4 (q, t)/chi(4)(t) = s(q xi(t)). Both the dynamic susceptibility chi(4)(tau(alpha)) and the dynamic correlation length xi(tau(alpha)) evaluated at the alpha relaxation time tau(alpha) can be fitted to a power law divergence at a critical packing fraction. The measured xi(tau(alpha)) widely exceeds the largest one previously observed for three-dimensional (3d) hard sphere fluids. The number of particles in a slow cluster and the correlation length are related by a robust power law, chi(4)(tau(alpha)) approximate to xi(d-p) (tau(alpha)), with an exponent d - p approximate to 1.6. This scaling is remarkably independent of epsilon, even though the strength of the dynamical heterogeneity at constant volume fraction depends strongly on epsilon.