999 resultados para DIFFUSE SCATTERING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prevention or suppression of protein aggregation is of great importance in the context of protein storage, transportation and delivery. Traditionally chaperones or other chemically active agents are used to stop or diffuse native protein aggregation. We have used gold nanoparticles to prevent thermal aggregation of alcohol dehydrogenase (ADH), a protein that maintains the alcohol level in the liver and stomach. A light-scattering assay has been used to investigate the effect of gold nanoparticles on thermal aggregation of ADH and the result of our study has been summarized in Fig. 1. The scattered light intensity from the solution containing ADH decreases when 45 nm gold nanoparticles are added prior to heating (thermal denaturation) the solution, which indicates prevention of aggregation. The aggregation of the protein is suppressed to the extent of 96% with picomolar concentration of 45 nm gold nanoparticles while micromolar amounts of other proteins and biological substances are necessary to achieve the same effect. The extent varies with the size and the concentration of the gold NPs for the same protein concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to the chemical nature of the surface, the dimensions of the confining host exert a significant influence on confined protein structures; this results in immense biological implications, especially those concerning the enzymatic activities of the protein. This study probes the structure of hemoglobin (Hb), a model protein, confined inside silica tubes with pore diameters that vary by one order of magnitude (approximate to 20-200 nm). The effect of confinement on the protein structure is probed by comparison with the structure of the protein in solution. Small-angle neutron scattering (SANS), which provides information on protein tertiary and quaternary structures, is employed to study the influence of the tube pore diameter on the structure and configuration of the confined protein in detail. Confinement significantly influences the structural stability of Hb and the structure depends on the Si-tube pore diameter. The high radius of gyration (R-g) and polydispersity of Hb in the 20 nm diameter Si-tube indicates that Hb undergoes a significant amount of aggregation. However, for Si-tube diameters greater or equal to 100 nm, the R-g of Hb is found to be in very close proximity to that obtained from the protein data bank (PDB) reported structure (R-g of native Hb=23.8 angstrom). This strongly indicates that the protein has a preference for the more native-like non-aggregated state if confined inside tubes of diameter greater or equal to 100 nm. Further insight into the Hb structure is obtained from the distance distribution function, p(r), and ab initio models calculated from the SANS patterns. These also suggest that the Si-tube size is a key parameter for protein stability and structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A facile, environmentally friendly approach to synthesize branched Ir nanochain-like structures under mild conditions, using polyfunctional capping molecules in an aqueous medium is reported; the nanostructures exhibit a surface plasmon resonance peak (SPR) in the visible region and serve as an active substrate for surface enhanced Raman scattering studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sparse estimation methods that utilize the l(p)-norm, with p being between 0 and 1, have shown better utility in providing optimal solutions to the inverse problem in diffuse optical tomography. These l(p)-norm-based regularizations make the optimization function nonconvex, and algorithms that implement l(p)-norm minimization utilize approximations to the original l(p)-norm function. In this work, three such typical methods for implementing the l(p)-norm were considered, namely, iteratively reweighted l(1)-minimization (IRL1), iteratively reweighted least squares (IRLS), and the iteratively thresholding method (ITM). These methods were deployed for performing diffuse optical tomographic image reconstruction, and a systematic comparison with the help of three numerical and gelatin phantom cases was executed. The results indicate that these three methods in the implementation of l(p)-minimization yields similar results, with IRL1 fairing marginally in cases considered here in terms of shape recovery and quantitative accuracy of the reconstructed diffuse optical tomographic images. (C) 2014 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The image reconstruction problem encountered in diffuse optical tomographic imaging is ill-posed in nature, necessitating the usage of regularization to result in stable solutions. This regularization also results in loss of resolution in the reconstructed images. A frame work, that is attributed by model-resolution, to improve the reconstructed image characteristics using the basis pursuit deconvolution method is proposed here. The proposed method performs this deconvolution as an additional step in the image reconstruction scheme. It is shown, both in numerical and experimental gelatin phantom cases, that the proposed method yields better recovery of the target shapes compared to traditional method, without the loss of quantitativeness of the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk Ge15Te85-xIn5Agx glasses are shown to exhibit electrical switching with switching/threshold voltages in the range of 70-120V for a sample thickness of 0.3 mm. Further, the samples exhibit threshold or memory behavior depending on the ON state current. The compositional studies confirm the presence of an intermediate phase in the range 8 <= x <= 16, revealed earlier by thermal studies. Further, SET-RESET studies have been performed by these glasses using a triangular pulse of 6 mA amplitude (for SET) and 21 mA amplitude (for RESET). Raman studies of the samples after the SET and RESET operations reveal that the SET state is a crystalline phase which is obtained by thermal annealing and the RESET state is the glassy state, similar to the as-quenched samples. It is interesting to note that the samples in the intermediate phase, especially compositions at x = 10, 12, and 14 withstand more set-reset cycles. This indicates compositions in the intermediate phase are better suited for phase change memory applications. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-invasive 3D imaging in materials and medical research involves methodologies such as X-ray imaging, MRI, fluorescence and optical coherence tomography, NIR absorption imaging, etc., providing global morphological/density/absorption changes of the hidden components. However, molecular information of such buried materials has been elusive. In this article we demonstrate observation of molecular structural information of materials hidden/buried in depth using Raman scattering. Typically, Raman spectroscopic observations are made at fixed collection angles, such as, 906, 1356, and 1806, except in spatially offset Raman scattering (SORS) (only back scattering based collection of photons) and transmission techniques. Such specific collection angles restrict the observations of Raman signals either from or near the surface of the materials. Universal Multiple Angle Raman Spectroscopy (UMARS) presented here employs the principle of (a) penetration depth of photons and then diffuse propagation through non-absorbing media by multiple scattering and (b) detection of signals from all the observable angles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimal measurement selection strategy based on incoherence among rows (corresponding to measurements) of the sensitivity (or weight) matrix for the near infrared diffuse optical tomography is proposed. As incoherence among the measurements can be seen as providing maximum independent information into the estimation of optical properties, this provides high level of optimization required for knowing the independency of a particular measurement on its counterparts. The proposed method was compared with the recently established data-resolution matrix-based approach for optimal choice of independent measurements and shown, using simulated and experimental gelatin phantom data sets, to be superior as it does not require an optimal regularization parameter for providing the same information. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A special morphological zinc oxide (ZnO) photoanode for dye-sensitized solar cell was fabricated by simple sol-gel drop casting technique. This film shows a wrinkled structure resembling the roots of banyan tree, which acts as an effective self scattering layer for harvesting more visible light and offers an easy transport path for photo-injected electrons. These ZnO electrode of low thickness (similar to 5 mu m) gained an enhanced short-circuit current density of 6.15 mA/cm(2), open-circuit voltage of 0.67 V, fill factor of 0.47 and overall conversion efficiency of 1.97 % under 1 sun illumination. This shows a high conversion efficiency and a superior performance than that of ZnO nanoparticle-based photoanode (eta similar to 1.13 %) of high thickness (similar to 8 mu m).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report inelastic light scattering studies on Ca(Fe0.97Co0.03)(2)As-2 in a wide spectral range of 120-5200 cm(-1) from 5 to 300 K, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at T-sm similar to 160 K. The mode frequencies of two first-order Raman modes B-1g and E-g, both involving the displacement of Fe atoms, show a sharp increase below T-sm. Concomitantly, the linewidths of all the first-order Raman modes show anomalous broadening below T-sm, attributed to strong spin-phonon coupling. The high frequency modes observed between 400 and 1200 cm(-1) are attributed to electronic Raman scattering involving the crystal field levels of d-orbitals of Fe2+. The splitting between xz and yz d-orbital levels is shown to be similar to 25 meV, which increases as temperature decreases below T-sm. A broad Raman band observed at similar to 3200 cm(-1) is assigned to two-magnon excitation of the itinerant Fe 3d antiferromagnet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of radiative coupling between scattering and absorbing aerosols, in an external mixture, on the aerosol radiative forcing (ARF) due to black carbon (BC), its sensitivity to the composite aerosol loading and composition, and surface reflectance are investigated using radiative transfer model simulations. The ARF due to BC is found to depend significantly on the optical properties of the `neighboring' (non-BC) aerosol species. The scattering due to these species significantly increases the top of the atmospheric warming due to black carbon aerosols, and significant changes in the radiative forcing efficiency of BC. This is especially significant over dark surfaces (such as oceans), despite the ARF due to BC being higher over snow and land-surfaces. The spatial heterogeneity of this effect (coupling or multiple scattering by neighboring aerosol species) imposes large uncertainty in the estimation ARF due to BC aerosols, especially over the oceans. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a survey on different numerical interpolation schemes used for two-phase transient heat conduction problems in the context of interface capturing phase-field methods. Examples are general transport problems in the context of diffuse interface methods with a non-equal heat conductivity in normal and tangential directions to the interface. We extend the tonsorial approach recently published by Nicoli M et al (2011 Phys. Rev. E 84 1-6) to the general three-dimensional (3D) transient evolution equations. Validations for one-dimensional, two-dimensional and 3D transient test cases are provided, and the results are in good agreement with analytical and numerical reference solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dispersion of nanoparticles in polymer nanocomposite films determines the application potential of these systems as novel materials with unique physical properties. Grafting polymers to, mostly inorganic, nanoparticles has been suggested as an effective strategy to enhance dispersion and hence the efficacy of materials. In this review, we discuss the various parameters which control dispersion of polymer grafted nanoparticles in polymer nanocomposite films. We discuss how surface x-ray scattering and microscopy can provide complementary and unique information in thin polymer nanocomposite films to unravel the subtle interplay of entropic and surface interactions, mediated by confinement, that leads to enhanced dispersion of the nanoparticles in these films. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SERS substrate was fabricated by depositing silver on anodized aluminum oxide (AAO) template. The thickness of the AA0 template was 200 nm with 40 nm circular pore and 15 nm spacing. SERS effect was observed on these metal coated structures due to electric field enhancement around the edge of the pores. Para-Nitrophenol (pnp) solution of 10(-6) M concentration was detected which refers to an enhancement factor of 10(4).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3-Dimensional Diffuse Optical Tomographic (3-D DOT) image reconstruction algorithm is computationally complex and requires excessive matrix computations and thus hampers reconstruction in real time. In this paper, we present near real time 3D DOT image reconstruction that is based on Broyden approach for updating Jacobian matrix. The Broyden method simplifies the algorithm by avoiding re-computation of the Jacobian matrix in each iteration. We have developed CPU and heterogeneous CPU/GPU code for 3D DOT image reconstruction in C and MatLab programming platform. We have used Compute Unified Device Architecture (CUDA) programming framework and CUDA linear algebra library (CULA) to utilize the massively parallel computational power of GPUs (NVIDIA Tesla K20c). The computation time achieved for C program based implementation for a CPU/GPU system for 3 planes measurement and FEM mesh size of 19172 tetrahedral elements is 806 milliseconds for an iteration.