Model-Resolution-Based Basis Pursuit Deconvolution Improves Diffuse Optical Tomographic Imaging
Data(s) |
2014
|
---|---|
Resumo |
The image reconstruction problem encountered in diffuse optical tomographic imaging is ill-posed in nature, necessitating the usage of regularization to result in stable solutions. This regularization also results in loss of resolution in the reconstructed images. A frame work, that is attributed by model-resolution, to improve the reconstructed image characteristics using the basis pursuit deconvolution method is proposed here. The proposed method performs this deconvolution as an additional step in the image reconstruction scheme. It is shown, both in numerical and experimental gelatin phantom cases, that the proposed method yields better recovery of the target shapes compared to traditional method, without the loss of quantitativeness of the results. |
Formato |
application/pdf |
Identificador |
http://eprints.iisc.ernet.in/49134/1/ieee_tra_med_ima_33-4_891_2014.pdf Prakash, Jaya and Dehghani, Hamid and Pogue, Brian W and Yalavarthy, Phaneendra K (2014) Model-Resolution-Based Basis Pursuit Deconvolution Improves Diffuse Optical Tomographic Imaging. In: IEEE TRANSACTIONS ON MEDICAL IMAGING, 33 (4). pp. 891-901. |
Publicador |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
Relação |
http://dx.doi.org/10.1109/TMI.2013.2297691 http://eprints.iisc.ernet.in/49134/ |
Palavras-Chave | #Supercomputer Education & Research Centre |
Tipo |
Journal Article PeerReviewed |