965 resultados para Cylindrical symmetry
Resumo:
The buckling of axially compressed cylindrical shells and externally pressurized spherical shells is extremely sensitive to even very small geometric imperfections. In practice this issue is addressed by either using overly conservative knockdown factors, while keeping perfect axial or spherical symmetry, or adding closely and equally spaced stiffeners on shell surface. The influence of imperfection-sensitivity is mitigated, but the shells designed from these approaches are either too heavy or very expensive and are still sensitive to imperfections. Despite their drawbacks, these approaches have been used for more than half a century.
This thesis proposes a novel method to design imperfection-insensitive cylindrical shells subject to axial compression. Instead of following the classical paths, focused on axially symmetric or high-order rotationally symmetric cross-sections, the method in this thesis adopts optimal symmetry-breaking wavy cross-sections (wavy shells). The avoidance of imperfection sensitivity is achieved by searching with an evolutionary algorithm for smooth cross-sectional shapes that maximize the minimum among the buckling loads of geometrically perfect and imperfect wavy shells. It is found that the shells designed through this approach can achieve higher critical stresses and knockdown factors than any previously known monocoque cylindrical shells. It is also found that these shells have superior mass efficiency to almost all previously reported stiffened shells.
Experimental studies on a design of composite wavy shell obtained through the proposed method are presented in this thesis. A method of making composite wavy shells and a photogrametry technique of measuring full-field geometric imperfections have been developed. Numerical predictions based on the measured geometric imperfections match remarkably well with the experiments. Experimental results confirm that the wavy shells are not sensitive to imperfections and can carry axial compression with superior mass efficiency.
An efficient computational method for the buckling analysis of corrugated and stiffened cylindrical shells subject to axial compression has been developed in this thesis. This method modifies the traditional Bloch wave method based on the stiffness matrix method of rotationally periodic structures. A highly efficient algorithm has been developed to implement the modified Bloch wave method. This method is applied in buckling analyses of a series of corrugated composite cylindrical shells and a large-scale orthogonally stiffened aluminum cylindrical shell. Numerical examples show that the modified Bloch wave method can achieve very high accuracy and require much less computational time than linear and nonlinear analyses of detailed full finite element models.
This thesis presents parametric studies on a series of externally pressurized pseudo-spherical shells, i.e., polyhedral shells, including icosahedron, geodesic shells, and triambic icosahedra. Several optimization methods have been developed to further improve the performance of pseudo-spherical shells under external pressure. It has been shown that the buckling pressures of the shell designs obtained from the optimizations are much higher than the spherical shells and not sensitive to imperfections.
Resumo:
The Talbot effect is one of the most basic optical phenomena that has received extensive investigations both because its new results provide us more understanding of the fundamental Fresnel diffraction and also because of its wide applications. We summarize our recent results on this subject. Symmetry of the Talbot effect, which was reported in Optics Communications in 1995, is now realized as the key to reveal other rules for explanation of the Talbot effect for array illumination. The regularly rearranged-neighboring-phase-differences (RRNPD) rule, a completely new set of analytic phase equations (Applied Optics, 1999), and the prime-number decomposing rule (Applied Optics, 2001) are the newly obtained results that reflect the symmetry of the Talbot effect in essence. We also reported our results on the applications of the Talbot effect. Talbot phase codes are the orthogonal codes that can be used for phase coding of holographic storage. A new optical scanner based on the phase codes for Talbot array illumination has unique advantages. Furthermore, a novel two-layered multifunctional computer-generated hologram based on the fractional Talbot effect was proposed and implemented (Optics Letters, 2003). We believe that these new results should bring us more new understanding of the Talbot effect and help us to design novel optical devices that should benefit practical applications. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Based on the two-dimensional coupled-wave theory, the wavefront conversion between cylindrical and plane waves by local volume holograms recorded at 632.8 nm and reconstructed at 800 nm is investigated. The proposed model can realize the 90 degrees holographic readout at a different readout wavelength. The analytical integral solutions for the amplitudes of the space harmonics of the field inside the transmission geometry are presented. The values of the off-Bragg parameter at the reconstructed process and the diffracted beam's amplitude distribution are analysed. In addition, the dependences of diffraction efficiency on the focal length of the recording cylindrical wave and on the geometrical dimensions of the grating are discussed. Furthermore, the focusing properties of this photorefractive holographic cylindrical lens are analysed.
Resumo:
A novel method for measuring the coma of a lithographic projection system is proposed and the principle of the method is described. By utilizing mirror-symmetry marks, the adverse effects of axial aberrations on the coma measurement are avoided. Experimental results demonstrated that the method has high accuracy. Compared with TAMIS, the conventional technique used for coma measurement, the method is more reliable because the influences of the process factors on the lateral displacements have been considered. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The numerical simulation of the wavefronts diffracted by apertures with circular symmetry is realized by a numerical method. It is based on the angular spectrum of plane waves, which ignored the vector nature of light. The on-axial irradiance distributions of plane wavefront and Gauss wavefront diffracted by the circular aperture have been calculated along the propagation direction. Comparisons of the simulation results with the analytical results and the experimental results tell us that it is a feasible method to calculate the diffraction of apertures. (c) 2006 Published by Elsevier GmbH.
Resumo:
The thesis is divided into two parts. Part I generalizes a self-consistent calculation of residue shifts from SU3 symmetry, originally performed by Dashen, Dothan, Frautschi, and Sharp, to include the effects of non-linear terms. Residue factorizability is used to transform an overdetermined set of equations into a variational problem, which is designed to take advantage of the redundancy of the mathematical system. The solution of this problem automatically satisfies the requirement of factorizability and comes close to satisfying all the original equations.
Part II investigates some consequences of direct channel Regge poles and treats the problem of relating Reggeized partial wave expansions made in different reaction channels. An analytic method is introduced which can be used to determine the crossed-channel discontinuity for a large class of direct-channel Regge representations, and this method is applied to some specific representations.
It is demonstrated that the multi-sheeted analytic structure of the Regge trajectory function can be used to resolve apparent difficulties arising from infinitely rising Regge trajectories. Also discussed are the implications of large collections of "daughter trajectories."
Two things are of particular interest: first, the threshold behavior in direct and crossed channels; second, the potentialities of Reggeized representations for us in self-consistent calculations. A new representation is introduced which surpasses previous formulations in these two areas, automatically satisfying direct-channel threshold constraints while being capable of reproducing a reasonable crossed channel discontinuity. A scalar model is investigated for low energies, and a relation is obtained between the mass of the lowest bound state and the slope of the Regge trajectory.
Resumo:
The focusing properties of a concentric piecewise cylindrical vector beam is investigated theoretically in this paper. The beam consists of three portions with different and changeable phase retardation and polarization. Numerical simulations show that the evolution of the focal shape is very considerable by changing the radius and polarization rotation angle of each portion of the vector beam. And some interesting focal spots may occur, such as two- or three-peak focus, dark hollow focus, ring focus, and two-ring-peak focus. Corresponding gradient force patterns are also computed, and novel trap patterns, including cup shell shape trap with one trap at its each side along axis, rectangle shell shape trap with one trap at its each side, dumbbell optical trap, spherical shell optical trap, may occur, which shows that the concentric piecewise cylindrical vector beam can be used to construct controllable optical tweezers. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
A realistic quantum many-body system, characterized by a generic microscopic Hamiltonian, is accessible only through approximation methods. The mean field theories, as the simplest practices of approximation methods, commonly serve as a powerful tool, but unfortunately often violate the symmetry of the Hamiltonian. The conventional BCS theory, as an excellent mean field approach, violates the particle number conservation and completely erases quantumness characterized by concurrence and quantum discord between different modes. We restore the symmetry by using the projected BCS theory and the exact numerical solution and find that the lost quantumness is synchronously reestablished. We show that while entanglement remains unchanged with the particle numbers, quantum discord behaves as an extensive quantity with respect to the system size. Surprisingly, discord is hardly dependent on the interaction strengths. The new feature of discord offers promising applications in modern quantum technologies.