977 resultados para Bearing degradation state
Resumo:
Many industrialised nations have changing demographic profiles, as increased longevity and decreased birth rates lead to an ageing population. This presents significant challenges for workforces, as older employees retire and there are insufficient numbers of younger employees to take their place. This leads to skills shortages, and strong competition for those who are available. This paper considers these issues in the context of Queensland, the third largest state of Australia. The Queensland Government is addressing the issues for all industries in the state, primarily through a Skills Plan and an Experience Pays Awareness Strategy. As the largest employer in the state, the Queensland Government has commenced implementing the Experience Pays Awareness Strategy within its own workforce. The approach touches on many facets of HRM. The HRM policy framework and tools are examined for their potential to support increased participation of older employees. A range of issues are addressed for older workers, including their competence and health and safety issues. Issues for managers include addressing myths and subtle discrimination against older workers, as well as managing cross-generational workforce. Other strategies and methods are targeted at cultural factors, such as the expectations of older workers, and the myths and discrimination against older workers. Yet other strategies are aimed at organisational issues such retention of knowledge and succession planning.
Resumo:
With increasingly complex engineering assets and tight economic requirements, asset reliability becomes more crucial in Engineering Asset Management (EAM). Improving the reliability of systems has always been a major aim of EAM. Reliability assessment using degradation data has become a significant approach to evaluate the reliability and safety of critical systems. Degradation data often provide more information than failure time data for assessing reliability and predicting the remnant life of systems. In general, degradation is the reduction in performance, reliability, and life span of assets. Many failure mechanisms can be traced to an underlying degradation process. Degradation phenomenon is a kind of stochastic process; therefore, it could be modelled in several approaches. Degradation modelling techniques have generated a great amount of research in reliability field. While degradation models play a significant role in reliability analysis, there are few review papers on that. This paper presents a review of the existing literature on commonly used degradation models in reliability analysis. The current research and developments in degradation models are reviewed and summarised in this paper. This study synthesises these models and classifies them in certain groups. Additionally, it attempts to identify the merits, limitations, and applications of each model. It provides potential applications of these degradation models in asset health and reliability prediction.
Resumo:
To navigate successfully in a previously unexplored environment, a mobile robot must be able to estimate the spatial relationships of the objects of interest accurately. A Simultaneous Localization and Mapping (SLAM) sys- tem employs its sensors to build incrementally a map of its surroundings and to localize itself in the map simultaneously. The aim of this research project is to develop a SLAM system suitable for self propelled household lawnmowers. The proposed bearing-only SLAM system requires only an omnidirec- tional camera and some inexpensive landmarks. The main advantage of an omnidirectional camera is the panoramic view of all the landmarks in the scene. Placing landmarks in a lawn field to define the working domain is much easier and more flexible than installing the perimeter wire required by existing autonomous lawnmowers. The common approach of existing bearing-only SLAM methods relies on a motion model for predicting the robot’s pose and a sensor model for updating the pose. In the motion model, the error on the estimates of object positions is cumulated due mainly to the wheel slippage. Quantifying accu- rately the uncertainty of object positions is a fundamental requirement. In bearing-only SLAM, the Probability Density Function (PDF) of landmark position should be uniform along the observed bearing. Existing methods that approximate the PDF with a Gaussian estimation do not satisfy this uniformity requirement. This thesis introduces both geometric and proba- bilistic methods to address the above problems. The main novel contribu- tions of this thesis are: 1. A bearing-only SLAM method not requiring odometry. The proposed method relies solely on the sensor model (landmark bearings only) without relying on the motion model (odometry). The uncertainty of the estimated landmark positions depends on the vision error only, instead of the combination of both odometry and vision errors. 2. The transformation of the spatial uncertainty of objects. This thesis introduces a novel method for translating the spatial un- certainty of objects estimated from a moving frame attached to the robot into the global frame attached to the static landmarks in the environment. 3. The characterization of an improved PDF for representing landmark position in bearing-only SLAM. The proposed PDF is expressed in polar coordinates, and the marginal probability on range is constrained to be uniform. Compared to the PDF estimated from a mixture of Gaussians, the PDF developed here has far fewer parameters and can be easily adopted in a probabilistic framework, such as a particle filtering system. The main advantages of our proposed bearing-only SLAM system are its lower production cost and flexibility of use. The proposed system can be adopted in other domestic robots as well, such as vacuum cleaners or robotic toys when terrain is essentially 2D.
Resumo:
Over 3000 cases of child sexual abuse are identified every year in Australia, but the real incidence is higher still. As a strategy to identify child sexual abuse, Australian States and Territories have enacted legislation requiring members of selected professions, including teachers, to report suspected cases. In addition, policy-based reporting obligations have been developed by professions, including the teaching profession. These legislative and industry-based developments have occurred in a context of growing awareness of the incidence and consequences of child sexual abuse. Teachers have frequent contact and close relationships with children, and possess expertise in monitoring changes in children’s behaviour. Accordingly, teachers are seen as being well-placed to detect and report suspected child sexual abuse. To date, however, there has been little empirical research into the operation of these reporting duties. The extent of teachers’ awareness of their duties to report child sexual abuse is unknown. Further, there is little evidence about teachers’ past reporting practice. Teachers’ duties to report sexual abuse, especially those in legislation, differ between States, and it is not known whether or how these differences affect reporting practice. This article presents results from the first large-scale Australian survey of teachers in three States with different reporting laws: New South Wales, Queensland, and Western Australia. The results indicate levels of teacher knowledge of reporting duties, reveal evidence about past reporting practice, and provide insights into anticipated future reporting practice and legal compliance. The findings have implications for reform of legislation and policy, training of teachers about the reporting of child sexual abuse, and enhancement of child protection.
Resumo:
In condition-based maintenance (CBM), effective diagnostics and prognostics are essential tools for maintenance engineers to identify imminent fault and to predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedules production if necessary. This paper presents a technique for accurate assessment of the remnant life of machines based on historical failure knowledge embedded in the closed loop diagnostic and prognostic system. The technique uses the Support Vector Machine (SVM) classifier for both fault diagnosis and evaluation of health stages of machine degradation. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for multi-class fault diagnosis. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
The neXus2 research project has sought to investigate the library and information services (LIS) workforce in Australia, from the institutional or employer perspective. The study builds on the neXus1 study, which collected data from individuals in the LIS workforce in order to present a snapshot of the profession in 2006, highlighting the demographics, educational background and career details of library and information professionals in Australia. To counterbalance this individual perspective, library institutions were invited to participate in a survey to contribute further data as employers. This final report on the neXus2 project compares the findings from the different library sectors, ie academic libraries, TAFE libraries, the National and State libraries, public libraries, special libraries and school libraries.
Resumo:
Dealing with the ever-growing information overload in the Internet, Recommender Systems are widely used online to suggest potential customers item they may like or find useful. Collaborative Filtering is the most popular techniques for Recommender Systems which collects opinions from customers in the form of ratings on items, services or service providers. In addition to the customer rating about a service provider, there is also a good number of online customer feedback information available over the Internet as customer reviews, comments, newsgroups post, discussion forums or blogs which is collectively called user generated contents. This information can be used to generate the public reputation of the service providers’. To do this, data mining techniques, specially recently emerged opinion mining could be a useful tool. In this paper we present a state of the art review of Opinion Mining from online customer feedback. We critically evaluate the existing work and expose cutting edge area of interest in opinion mining. We also classify the approaches taken by different researchers into several categories and sub-categories. Each of those steps is analyzed with their strength and limitations in this paper.
Resumo:
Construction projects can involve a diverse range of stakeholders and the success of the project depends very much on fulfilling their needs and expectations. It is important, therefore, to identify and recognize project stakeholders and develop a rigorous stakeholder management process. However, limited research has investigated the impact of stakeholders on construction projects in developing countries. A stakeholder impact analysis (SIA), based on an approach developed by Olander (2007), was adopted to investigate the stakeholders' impact on state-owned civil engineering projects in Vietnam. This involved the analysis of a questionnaire survey of 57 project managers to determine the relative importance of different stakeholders. The results show the client to have the highest level of impact on the projects, followed by project managers and the senior management of state-owned engineering firms. The SIA also provides suggestions to project managers in developing and evaluating the stakeholder management process.
Resumo:
A range of novel tetramethyl- and tetraethylisoindolinenitroxides, possessing aryl-linked carboxylic acids, amines, alcohols and phosphonic acids were prepared. Notably, the chemistry established for the aromatic dibromination of the tetramethylisoindolines was not easily transferred to the corresponding tetraethylisoindoline system. Instead, various tetraethylisoindoline analogues were accessed by the oxidation of methyl groups attached to the aromatic ring to give the carboxylic acids. The increased steric bulk of the tetraethyl structures should limit bio-reduction and these compounds may have potential as antioxidants.
Resumo:
A laboratory scale twin screw extruder has been interfaced with a near infrared (NIR) spectrometer via a fibre optic link so that NIR spectra can be collected continuously during the small scale experimental melt state processing of polymeric materials. This system can be used to investigate melt state processes such as reactive extrusion, in real time, in order to explore the kinetics and mechanism of the reaction. A further advantage of the system is that it has the capability to measure apparent viscosity simultaneously which gives important additional information about molecular weight changes and polymer degradation during processing. The system was used to study the melt processing of a nanocomposite consisting of a thermoplastic polyurethane and an organically modified layered silicate.
Resumo:
The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.
Resumo:
Batch, column and field lysimeter studies have been conducted to evaluate the concept of codisposal of retort water with Rundle (Queensland, Australia) waste shales. The batch studies indicated that degradation of a significant proportion of the total organic load occurs if the mixture is seeded with soil or compost. These results are compared with those from laboratory column studies and from the field lysimeter at the Rundle site. G.c.-m.s. analysis of some of the eluants indicated that significant degradation of the base-neutral fraction occurs even if no soil seed is added, and that degradation of this fraction was higher under anaerobic conditions.