Bearing-only SLAM : a vision-based navigation system for autonomous robots
Data(s) |
2008
|
---|---|
Resumo |
To navigate successfully in a previously unexplored environment, a mobile robot must be able to estimate the spatial relationships of the objects of interest accurately. A Simultaneous Localization and Mapping (SLAM) sys- tem employs its sensors to build incrementally a map of its surroundings and to localize itself in the map simultaneously. The aim of this research project is to develop a SLAM system suitable for self propelled household lawnmowers. The proposed bearing-only SLAM system requires only an omnidirec- tional camera and some inexpensive landmarks. The main advantage of an omnidirectional camera is the panoramic view of all the landmarks in the scene. Placing landmarks in a lawn field to define the working domain is much easier and more flexible than installing the perimeter wire required by existing autonomous lawnmowers. The common approach of existing bearing-only SLAM methods relies on a motion model for predicting the robot’s pose and a sensor model for updating the pose. In the motion model, the error on the estimates of object positions is cumulated due mainly to the wheel slippage. Quantifying accu- rately the uncertainty of object positions is a fundamental requirement. In bearing-only SLAM, the Probability Density Function (PDF) of landmark position should be uniform along the observed bearing. Existing methods that approximate the PDF with a Gaussian estimation do not satisfy this uniformity requirement. This thesis introduces both geometric and proba- bilistic methods to address the above problems. The main novel contribu- tions of this thesis are: 1. A bearing-only SLAM method not requiring odometry. The proposed method relies solely on the sensor model (landmark bearings only) without relying on the motion model (odometry). The uncertainty of the estimated landmark positions depends on the vision error only, instead of the combination of both odometry and vision errors. 2. The transformation of the spatial uncertainty of objects. This thesis introduces a novel method for translating the spatial un- certainty of objects estimated from a moving frame attached to the robot into the global frame attached to the static landmarks in the environment. 3. The characterization of an improved PDF for representing landmark position in bearing-only SLAM. The proposed PDF is expressed in polar coordinates, and the marginal probability on range is constrained to be uniform. Compared to the PDF estimated from a mixture of Gaussians, the PDF developed here has far fewer parameters and can be easily adopted in a probabilistic framework, such as a particle filtering system. The main advantages of our proposed bearing-only SLAM system are its lower production cost and flexibility of use. The proposed system can be adopted in other domestic robots as well, such as vacuum cleaners or robotic toys when terrain is essentially 2D. |
Formato |
application/pdf application/pdf |
Identificador | |
Publicador |
Queensland University of Technology |
Relação |
http://eprints.qut.edu.au/28599/1/Henry_Huang_Thesis.pdf http://eprints.qut.edu.au/28599/2/Henry_Huang_Citation.pdf Huang, Henry (2008) Bearing-only SLAM : a vision-based navigation system for autonomous robots. PhD thesis, Queensland University of Technology. |
Fonte |
Faculty of Science and Technology |
Palavras-Chave | #robot navigation, mobile robot, autonomous lawnmower, household lawnmower, simultaneous localization and mapping, bearing-only SLAM, visual SLAM, landmark initialization, localization, mapping, omnidirectional camera, stereo vision #structure from motion, indistinguishable landmark, unknown data association, particle filtering, probability density function, object occlusion |
Tipo |
Thesis |