1000 resultados para Ayrer, Maximilien (15..-1577) -- Portraits
Resumo:
Wireless Sensor Networks (WSNs) have been attracting increasing interests for developing a new generation of embedded systems with great potential for many applications such as surveillance, environment monitoring, emergency medical response and home automation. However, the communication paradigms in WSNs differ from the ones attributed to traditional wireless networks, triggering the need for new communication protocols. In this context, the recently standardised IEEE 802.15.4 protocol presents some potentially interesting features for deployment in wireless sensor network applications, such as power-efficiency, timeliness guarantees and scalability. Nevertheless, when addressing WSN applications with (soft/hard) timing requirements some inherent paradoxes emerge, such as power-efficiency versus timeliness, triggering the need of engineering solutions for an efficient deployment of IEEE 802.15.4 in WSNs. In this technical report, we will explore the most relevant characteristics of the IEEE 802.15.4 protocol for wireless sensor networks and present the most important challenges regarding time-sensitive WSN applications. We also provide some timing performance and analysis of the IEEE 802.15.4 that unveil some directions for resolving the previously mentioned paradoxes.
Improving the IEEE 802.15.4 Slotted CSMA/CA MAC for time-critical events in wireless sensor networks
Resumo:
In beacon-enabled mode, IEEE 802.15.4 is ruled by the slotted CSMA/CA Medium Access Control (MAC) protocol. The standard slotted CSMA/CA mechanism does not provide any means of differentiated services to improve the quality of service for timecritical events (such as alarms, time slot reservation, PAN management messages etc.). In this paper, we present and discuss practical service differentiation mechanisms to improve the performance of slotted CSMA/CA for time-critical events, with only minor add-ons to the protocol. The contribution of our proposal is more practical than theoretical since our initial requirement is to leave the original algorithm of the slotted CSMA/CA unchanged, but rather tuning its parameters adequately according to the criticality of the messages. We present a simulation study based on an accurate model of the IEEE 802.15.4 MAC protocol, to evaluate the differentiated service strategies. Four scenarios with different settings of the slotted CSMA/CA parameters are defined. Each scenario is evaluated for FIFO and Priority Queuing. The impact of the hiddennode problem is also analyzed, and a solution to mitigate it is proposed.
Resumo:
The IEEE 802.15.4 Medium Access Control (MAC) protocol is an enabling technology for time sensitive wireless sensor networks thanks to its Guaranteed-Time Slot (GTS) mechanism in the beacon-enabled mode. However, the protocol only supports explicit GTS allocation, i.e. a node allocates a number of time slots in each superframe for exclusive use. The limitation of this explicit GTS allocation is that GTS resources may quickly disappear, since a maximum of seven GTSs can be allocated in each superframe, preventing other nodes to benefit from guaranteed service. Moreover, the GTSs may be only partially used, resulting in wasted bandwidth. To overcome these limitations, this paper proposes i-GAME, an implicit GTS Allocation Mechanism in beacon-enabled IEEE 802.15.4 networks. The allocation is based on implicit GTS allocation requests, taking into account the traffic specifications and the delay requirements of the flows. The i-GAME approach enables the use of a GTS by multiple nodes, while all their (delay, bandwidth) requirements are still satisfied. For that purpose, we propose an admission control algorithm that enables to decide whether to accept a new GTS allocation request or not, based not only on the remaining time slots, but also on the traffic specifications of the flows, their delay requirements and the available bandwidth resources. We show that our proposal improves the bandwidth utilization compared to the explicit allocation used in the IEEE 802.15.4 protocol standard. We also present some practical considerations for the implementation of i-GAME, ensuring backward compatibility with the IEEE 801.5.4 standard with only minor add-ons.
Resumo:
The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks including sensor networks. It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When enabling its beacon mode, the protocol makes possible real-time guarantees by using its Guaranteed Time Slot (GTS) mechanism. This paper analyzes the performance of the GTS allocation mechanism in IEEE 802.15.4. The analysis gives a full understanding of the behavior of the GTS mechanism with regards to delay and throughput metrics. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters. We then evaluate the delay bounds guaranteed by an allocation of a GTS using Network Calculus formalism. Finally, based on the analytic results, we analyze the impact of the IEEE 802.15.4 parameters on the throughput and delay bound guaranteed by a GTS allocation. The results of this work pave the way for an efficient dimensioning of an IEEE 802.15.4 cluster.
Resumo:
In this paper, we analyze the performance limits of the slotted CSMA/CA mechanism of IEEE 802.15.4 in the beacon-enabled mode for broadcast transmissions in WSNs. The motivation for evaluating the beacon-enabled mode is due to its flexibility for WSN applications as compared to the non-beacon enabled mode. Our analysis is based on an accurate simulation model of the slotted CSMA/CA mechanism on top of a realistic physical layer, with respect to the IEEE 802.15.4 standard specification. The performance of the slotted CSMA/CA is evaluated and analyzed for different network settings to understand the impact of the protocol attributes (superframe order, beacon order and backoff exponent) on the network performance, namely in terms of throughput (S), average delay (D) and probability of success (Ps). We introduce the concept of utility (U) as a combination of two or more metrics, to determine the best offered load range for an optimal behavior of the network. We show that the optimal network performance using slotted CSMA/CA occurs in the range of 35% to 60% with respect to an utility function proportional to the network throughput (S) divided by the average delay (D).
Resumo:
The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks (LR-WPAN) including wireless sensor networks (WSNs). It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When in beaconenabled mode, the protocol can provide timeliness guarantees by using its Guaranteed Time Slot (GTS) mechanism. However, power-efficiency and timeliness guarantees are often two antagonistic requirements in wireless sensor networks. The purpose of this paper is to analyze and propose a methodology for setting the relevant parameters of IEEE 802.15.4-compliant WSNs that takes into account a proper trade-off between power-efficiency and delay bound guarantees. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters, using Network Calculus formalism. We then evaluate the delay bound guaranteed by a GTS allocation and express it as a function of the duty cycle. Based on the relation between the delay requirement and the duty cycle, we propose a power-efficient superframe selection method that simultaneously reduces power consumption and enables meeting the delay requirements of real-time flows allocating GTSs. The results of this work may pave the way for a powerefficient management of the GTS mechanism in an IEEE 802.15.4 cluster.
Resumo:
This technical report is to provide a reference guide to the implementation of the IEEE 802.15.4 protocol in nesC/TinyOS for the MICAz motes. The implementation is provided as a tool that can be used to implement, test and evaluate the current functionalities defined in the protocol standard as well as to enable the development of functionalities not yet implemented and new add-ons to the protocol.
Resumo:
The IEEE 802.15.4 has been adopted as a communication protocol standard for Low-Rate Wireless Private Area Networks (LRWPANs). While it appears as a promising candidate solution for Wireless Sensor Networks (WSNs), its adequacy must be carefully evaluated. In this paper, we analyze the performance limits of the slotted CSMA/CA medium access control (MAC) mechanism in the beacon-enabled mode for broadcast transmissions in WSNs. The motivation for evaluating the beacon-enabled mode is due to its flexibility and potential for WSN applications as compared to the non-beacon enabled mode. Our analysis is based on an accurate simulation model of the slotted CSMA/CA mechanism on top of a realistic physical layer, with respect to the IEEE 802.15.4 standard specification. The performance of the slotted CSMA/CA is evaluated and analyzed for different network settings to understand the impact of the protocol attributes (superframe order, beacon order and backoff exponent), the number of nodes and the data frame size on the network performance, namely in terms of throughput (S), average delay (D) and probability of success (Ps). We also analytically evaluate the impact of the slotted CSMA/CA overheads on the saturation throughput. We introduce the concept of utility (U) as a combination of two or more metrics, to determine the best offered load range for an optimal behavior of the network. We show that the optimal network performance using slotted CSMA/CA occurs in the range of 35% to 60% with respect to an utility function proportional to the network throughput (S) divided by the average delay (D).
Resumo:
This technical report describes the implementation details of the Implicit GTS Allocation Mechanism (i-GAME), for the IEEE 802.15.4 protocol. The i-GAME was implemented in nesC/TinyOS for the CrossBow MICAz mote, over our own implementation of the IEEE 802.15.4 protocol stack. This document provides the implementation details, including a description of the i-GAME software interfaces.
Resumo:
The recently standardized IEEE 802.15.4/Zigbee protocol stack offers great potentials for ubiquitous and pervasive computing, namely for Wireless Sensor Networks (WSNs). However, there are still some open and ambiguous issues that turn its practical use a challenging task. One of those issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This report tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes two collisionfree beacon frame scheduling schemes.
Resumo:
This paper presents the implementation of the OFDM demodulator and the Viterbi decoder, proposed as part of a wireless High Definition video receiver to be integrated in an FPGA. These blocks were implemented in a Xilinx Virtex-6 FPGA. The complete system was previously modeled and simulated using MATLAB/Simulink to extract importante hardware characteristics for the FPGA implementation.
Resumo:
Portuguese version:
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para a obtenção do grau de Mestre em Intervenção Precoce
Resumo:
Trabalho final do Curso de Alta Direção em Administração Pública - CADAP (código 2257/30) realizado pelo INA em Aveiro, 2011.