999 resultados para 13078-010
Resumo:
Epilepsy is characterized by the spontaneous and seemingly unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic system that detects seizure onsets would allow patients or the people near them to take appropriate precautions, and could provide more insight into this phenomenon. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, we made a comparative study of the performance of Gaussian mixture model (GMM) and Support Vector Machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Results show that the selected HOS based features achieve 93.11% classification accuracy compared to 88.78% with features derived from the power spectrum for a GMM classifier. The SVM classifier achieves an improvement from 86.89% with features based on the power spectrum to 92.56% with features based on the bispectrum.
Resumo:
Abstract Objective Involuntary commitment and treatment (IC&T) of people affected by mental illness may have reference to considerations of dangerousness and/or need for care. While attempts have been made to classify mental health legislation according to whether IC&T has obligatory dangerousness criteria, there is no standardised procedure for making classification decisions. The aim of this study was to develop and trial a classification procedure and apply it to Australia's mental health legislation. Method We developed benchmarks for ‘need for care’ and ‘dangerousness’ and applied these benchmarks to classify the mental health legislation of Australia's 8 states and territories. Our focus was on civil commitment legislation rather than criminal commitment legislation. Results One state changed its legislation during the course of the study resulting in two classificatory exercises. In our initial classification, we were able to classify IC&T provisions in legislation from 6 of the 8 jurisdictions as being based on either ‘need for care’ or ‘dangerousness’. Two jurisdictions used a terminology that was outside the established benchmarks. In our second classification, we were also able to successfully classify IC&T provisions in 6 of the 8 jurisdictions. Of the 6 Acts that could be classified, all based IC&T on ‘need for care’ and none contained mandatory ‘dangerousness’ criteria. Conclusions The classification system developed for this study provided a transparent and probably reliable means of classifying 75% of Australia's mental health legislation. The inherent ambiguity of the terminology used in two jurisdictions means that further development of classification may not be possible until the meaning of the terms used has been addressed in case law. With respect to the 6 jurisdictions for which classification was possible, the findings suggest that Australia's mental health legislation relies on ‘need for care’ and not on ‘dangerousness’ as the guiding principle for IC&T. Keywords: Involuntary commitment; Mental health legislation; Dangerousness; Australia
Resumo:
In the structure of the title compound, [C8H11LiO4(H2O)2]n the distorted tetrahadral LiO4 coordination sphere comprises two water molecules and two carboxyl O-donors from separate bridging cis-2-carboxycyclohexane-1-carboxylate monoanions [Li-O range, 1.887(4)-1.946(3)A], giving chain substructures which extend along (010). Water-water and water-carboxyl O-H...O hydrogen bonds stabilize these chain structures and provide inter-chain links, resulting in a two-dimensional layered structure extending across (011).
Resumo:
We read the excellent review of telemonitoring in chronic heart failure (CHF)1 with interest and commend the authors on the proposed classification of telemedical remote management systems according to the type of data transfer, decision ability and level of integration. However, several points require clarification in relation to our Cochrane review of telemonitoring and structured telephone support2. We included a study by Kielblock3. We corresponded directly with this study team specifically to find out whether or not this was a randomised study and were informed that it was a randomised trial, albeit by date of birth. We note in our review2 that this randomisation method carries a high risk of bias. Post-hoc metaanalyses without these data demonstrate no substantial change to the effect estimates for all cause mortality (original risk ratio (RR) 0·66 [95% CI 0·54, 0·81], p<0·0001; revised RR 0·72 [95% CI 0·57, 0·92], p=0·008), all-cause hospitalisation (original RR 0·91 [95% CI 0·84, 0·99] p=0·02; revised RR 0.92 [95% CI 0·84, 1·02], p=0·10 ) or CHF-related hospitalisation (original RR 0·79 [95% CI 0·67, 0·94] p=0·008; revised RR 0·75 [95% CI 0·60, 0·94] p=0·01). Secondly, we would classify the Tele-HF study4, 5 as structured telephone support, rather than telemonitoring. Again, inclusion of these data alters the point-estimate but not the overall result of the meta-analyses4. Finally, our review2 does not include invasive telemonitoring as the search strategy was not designed to capture these studies. Therefore direct comparison of our review findings with recent studies of these interventions is not recommended.
Resumo:
Methodological differences among studies of vasomotor symptoms limit rigorous comparison or systematic review. Vasomotor symptoms generally include hot flushes and night sweats although other associated symptoms exist. Prevalence rates vary between and within populations, but different studies collect data on frequency, bothersomeness, and/or severity using different outcome measures and scales, making comparisons difficult. We reviewed only cross-cultural studies of menopausal symptoms that explicitly examined symptoms in general populations of women in different countries or different ethnic groups in the same country. This resulted in the inclusion of nine studies: Australian/Japanese Midlife Women's Health Study (AJMWHS), Decisions At Menopause Study (DAMeS), Four Major Ethnic Groups (FMEG), Hilo Women's Health Survey (HWHS), Mid-Aged Health in Women from the Indian Subcontinent (MAHWIS), Penn Ovarian Aging Study (POAS), Study of Women's Health Across the Nation (SWAN), Women's Health in Midlife National Study (WHiMNS), and Women's International Study of Health and Sexuality (WISHeS). These studies highlight the methodological challenges involved in conducting multi-population studies, particularly when languages differ, but also highlight the importance of performing multivariate and factor analyses. Significant cultural differences in one or more vasomotor symptoms were observed in 8 of 9 studies, and symptoms were influenced by the following determinants: menopausal status, hormones (and variance), age (or actually, the square of age, age2), BMI, depression, anxiety, poor physical health, perceived stress, lifestyle factors (hormone therapy use, smoking and exposure to passive smoke), and acculturation (in immigrant populations). Recommendations are made to improve methodological rigor and facilitate comparisons in future cross-cultural menopause studies.
An experimental and computational investigation of performance of Green Gully for reusing stormwater
Resumo:
A new stormwater quality improvement device (SQID) called ‘Green Gully’ has been designed and developed in this study with an aim to re-using stormwater for irrigating plants and trees. The main purpose of the Green Gully is to collect road runoff/stormwater, make it suitable for irrigation and provide an automated network system for watering roadside plants and irrigational areas. This paper presents the design and development of Green Gully along with experimental and computational investigations of the performance of Green Gully. Performance (in the form of efficiency, i.e. the percentage of water flow through the gully grate) was experimentally determined using a gully model in the laboratory first, then a three dimensional numerical model was developed and simulated to predict the efficiency of Green Gully as a function of flow rate. Computational Fluid Dynamics (CFD) code FLUENT was used for the simulation. GAMBIT was used for geometry creation and mesh generation. Experimental and simulation results are discussed and compared in this paper. The predicted efficiency was compared with the laboratory measured efficiency. It was found that the simulated results are in good agreement with the experimental results.