914 resultados para surface structure
Resumo:
23rd Congress of the International Comission for Optics (ICO 23)
Resumo:
A surface-region-purification-induced p-n junction, a puzzle discovered at Brookhaven National Laboratory, in a silicon-on-defect-layer (SODL) material has been explored by carrying out various annealing conditions and subsequent measurements on electrical properties. The origin of the pn junction has been experimentally investigated. Furthermore, the p-n junction has been transformed into a p-i-n electrical structure by adding a high temperature annealing process to the previously used SODL procedure, making the SODL material approach silicon on insulator (SOI). The control of the initial oxygen amount in the silicon material is suggested to be critical for the experimental results.
Resumo:
We have examined the influence of substrate surface orientation on self-assembled InAlAs/AlGaAs quantum dots grown on (0 0 1) and (n 1 1) A/B (n = 3, 5) GaAs substrates by molecular beam epitaxy (MBE). Preliminary characterizations have been performed using photoluminescence (PL) and transmission electron microscopy (TEM). The PL emission energies of quantum dots on high Miller index surface are found to be strongly dependent on the atomic-terminated surface (A or B surface) of the substrate. We observed that there were planar ordering larger islands on (3 1 1)B surface compared to (0 0 1) surface, in contrast, a rough interface and smaller "grains" on (3 1 1)A surface, this result is identical with PL emission energy from these islands. We propose that the rapid strain-induced surface "roughening" impedes the formation of 3D islands on A surface, and indicating that this is a promising approach of the realization of ordering distribution on (3 1 1)B plane for devices such as red-emitting semiconductor quantum dots lasers. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Microphotoluminescence (mu-PL) investigation has been performed at room temperature on InAs quantum dot (QD) vertical cavity surface emitting laser (VCSEL) structure in order to characterize the QD epitaxial structure which was designed for 1.3 mu m wave band emission. Actual and precise QD emission spectra including distinct ground state (GS) and excited state (ES) transition peaks are obtained by an edge-excitation and edge-emission (EEEE) mu-PL configuration. Conventional photoluminescence methods for QD-VCSELs structure analysis are compared and discussed, which indicate the EEEE mu-PL is a useful tool to determine the optical features of the QD active region in an as-grown VCSEL structure. Some experimental results have been compared with simulation results obtained with the aid of the plane-wave admittance method. After adjustment of epitaxial growth according to EEEE mu-PL measurement results, QD-VCSEL structure wafer with QD GS transition wavelength of 1300 nm and lasing wavelength of 1301 nm was obtained.
Resumo:
A universal metal-molecule-metal sandwich architecture by the self-assembly of Ag nanoparticles (NPs) and Au NPs of various shapes interconnected with 4-aminothiophenol (4-ATP) molecules was presented. These Ag NPs/4-ATP/Au NPs sandwich structures were characterized by surface enhanced Raman scattering (SERS) using an off-surface plasmon resonance condition. Enhancement factors (EF) on the order of 10(8) for 9b(b(2)) vibration mode were observed for the 4-ATP self-assembled monolayers (SAMs) in such sandwich structures. The factors are 2 orders of magnitude larger than that on the monolayer of Au NPs of various shapes under similar condition. More importantly, remarkable increase in the intensity of b(2) vibrational modes, which is characteristic of the charge transfer (CT) behavior between metal NPs and 4-ATP molecules, was observed in these sandwich structures under 1064 nm excitation. The obtained EF on these sandwich structure for 9b(b(2)) is larger than that for 7a vibration mode by a factor of similar to 10(2), demonstrating the importance of the contribution of the CT mechanism and the CT behavior of metal contacts, which play a significant role in metal-molecule-metal nanosystems.
Resumo:
A sandwich structure consisting of Ag nanoparticles (NPs), p-aminothiophenol (p-ATP) self-assembled monolayers (SAMs), and Ag NPs was fabricated on glass and characterized by surface enhanced Raman scattering (SERS). The SERS spectrum of a p-ATP SAM in such sandwich structure shows that the electromagnetic enhancement is greater than that on Ag NPs assembled on glass. The obtained enhancement factors (EF) on solely one sandwich structure were as large as 6.0 +/- 0.62x10(4) and 1.2 +/- 0.62x10(7) for the 7a and 3b(b(2)) vibration modes, respectively. The large enhancement effect of p-ATP SAMs is likely a result of plasmon coupling between the two layers of Ag NP (localized surface plasmon) resonance, creating a large localized electromagnetic field at their interface, where p-ATP resides. Moreover, the fact that large EF values (similar to 1.9 +/- 0.7x10(4) and 9.4 +/- 0.7x10(6) for the 7a- and b(2)-type vibration modes, respectively) were also obtained on a single sandwich structure of Au NPs/p-ATP SAMs/Ag NPs in the visible demonstrates that the electromagnetic coupling does not exist only between Ag NPs but also between Au and Ag NPs.
Resumo:
The synthetic and functional versatility of dendrimers and their well-defined shapes make them attractive molecules for surface modification. We synthesized six structurally very similar surface-bound dendrons and used them as building blocks for the preparation of self-assembled monolayers (SAMs) on a gold surface. We studied the effects of the surface-bound dendron's main structure, peripheral substituents, and the coadsorption process on its self-assembling behavior. Using scanning tunneling microscopy (STM), we observed nanostripes for SAMs of the surface-bound dendron consisting of symmetrical benzene rings. When we changed the symmetrical dendron's structure slightly, by increasing or decreasing the numbers of benzene rings at one wedge, we found no ordered structures were formed by the asymmetrical dendrons. We also introduced two kinds of substituents, heptane chains and oligo(ethylene oxide) chains, to the symmetrical dendron's periphery. Heptane chains appear to enhance the interaction between symmetrical backbones, leading to the formation of stripes, while oligo(ethylene oxide) chains appear to weaken the interaction between symmetrical backbones, resulting in a homogeneous structure. Dendrons with both heptane and oligo(ethylene oxide) chains exhibit nanophase separation in a confined state, leading to the formation of a honeycomb structure.
Resumo:
We address the computational role that the construction of a complete surface representation may play in the recovery of 3--D structure from motion. We present a model that combines a feature--based structure--from- -motion algorithm with smooth surface interpolation. This model can represent multiple surfaces in a given viewing direction, incorporates surface constraints from object boundaries, and groups image features using their 2--D image motion. Computer simulations relate the model's behavior to perceptual observations. In a companion paper, we discuss further perceptual experiments regarding the role of surface reconstruction in the human recovery of 3--D structure from motion.
Resumo:
The structure and properties of Sm overlayer and Sm/Rh surface alloy have been investigated with Auger electron spectroscopy (AES), low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), and temperature programmed desorption spectroscopy (TDS). The growth of Sm on Rh(100) at room temperature (RT) appears following the Stranski-Krastanov growth mode and only the trivalent state Sm is observed from XPS results. Thermal treatment of the Sm film at 900 K leads to the formation of ordered surface alloy which shows the c(5 root2 x root2)R45 degrees and c(2 x 2) LEED patterns. Annealing the Sm film at temperature above 400 K makes the binding energy (B.E.) of Sm 3d(5/2) shift to higher energy by 0.7 eV, which indicates charge transfer from Sm to Rh(100) substrate, causing the increase of CO desorption temperature.
Resumo:
The hybridization kinetics for a series of designed 25mer probe�target pairs having varying degrees of secondary structure have been measured by UV absorbance and surface plasmon resonance (SPR) spectroscopy in solution and on the surface, respectively. Kinetic rate constants derived from the resultant data decrease with increasing probe and target secondary structure similarly in both solution and surface environments. Specifically, addition of three intramolecular base pairs in the probe and target structure slow hybridization by a factor of two. For individual strands containing four or more intramolecular base pairs, hybridization cannot be described by a traditional two-state model in solution-phase nor on the surface. Surface hybridization rates are also 20- to 40-fold slower than solution-phase rates for identical sequences and conditions. These quantitative findings may have implications for the design of better biosensors, particularly those using probes with deliberate secondary structure.