984 resultados para sediment production


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of elevated CO2 and temperature on photosynthesis and calcification in the calcifying algae Halimeda macroloba and Halimeda cylindracea and the symbiont-bearing benthic foraminifera Marginopora vertebralis were investigated through exposure to a combination of four temperatures (28°C, 30°C, 32°C, and 34°C) and four CO2 levels (39, 61, 101, and 203 Pa; pH 8.1, 7.9, 7.7, and 7.4, respectively). Elevated CO2 caused a profound decline in photosynthetic efficiency (FV : FM), calcification, and growth in all species. After five weeks at 34°C under all CO2 levels, all species died. Chlorophyll (Chl) a and b concentration in Halimeda spp. significantly decreased in 203 Pa, 32°C and 34°C treatments, but Chl a and Chl c2 concentration in M. vertebralis was not affected by temperature alone, with significant declines in the 61, 101, and 203 Pa treatments at 28°C. Significant decreases in FV : FM in all species were found after 5 weeks of exposure to elevated CO2 (203 Pa in all temperature treatments) and temperature (32°C and 34°C in all pH treatments). The rate of oxygen production declined at 61, 101, and 203 Pa in all temperature treatments for all species. The elevated CO2 and temperature treatments greatly reduced calcification (growth and crystal size) in M. vertebralis and, to a lesser extent, in Halimeda spp. These findings indicate that 32°C and 101 Pa CO2, are the upper limits for survival of these species on Heron Island reef, and we conclude that these species will be highly vulnerable to the predicted future climate change scenarios of elevated temperature and ocean acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lack of extended dataset has so far prevented an inclusive understanding of the long-term relationships between primary production (PP) and vertical export in the Arctic Ocean. It is urgent to investigate these connections as Arctic ecosystems are on the verge of climate-related shifts, which could be caused by the combined effects of increase in Pacific and Atlantic inflow, climate warming, and sea ice decline. For a period of 6 years we investigated the degree of coupling between PP and export by making use of modelled PP rates and vertical particle fluxes collected with sediment traps moored at ~300 m depth in the eastern Fram Strait. Our analyses indicate that total and new simulated PP averaged for different areas centered on the mooring location (5-200 km radius) explain at best 20-44% of the observed biogenic particle fluxes at 300 m, when applying extended time-lags (55-90 days) between PP and vertical fluxes. Based on this phasing, we define a conceptual framework that presents the temporal dimension as a prime determinant of the maximum strength of the PP-export coupling at a given depth. Our results support that planktonic food webs in the Fram Strait process heavily biogenic material in the epipelagic zone, but we further suggest that Atlantic-Arctic water interactions induce a particular ecological setting responsible for the extended turn-over. In conclusion, we hypothesize that global warming could promote a transition toward a more retentive ecosystem in the Fram Strait region despite the likely increase of pelagic PP in the Arctic Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the ecology of calcareous dinoflagellates we examined the impact of the SW and NE monsoons on cyst formation using sediment trap material, collected at 1032 m water depth, off Somalia from June 1992 to February 1993. The results do not confirm the relationship between cyst production and lower nutrient concentrations, as highest cyst fluxes were recorded during late SW monsoon under the relatively nutrient-rich and less agitated conditions of mature upwelled water. Lowest cyst fluxes were found under strongly stratified, nutrient-depleted surface waters during the inter-monsoon. Although all of the studied species seem to prefer a stratified water column, an elevated concentration of nutrients appears to be necessary to maintain high cyst production. Comparison of the mean cyst flux to the sediment trap with that into the underlying surface sediments reveals a loss of 81-96%, which can be attributed to calcite dissolution. The relatively small spheres of Thoracosphaera heimii are affected more than the cysts of the other species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[1] The low-latitude upwelling regime off the Mauritanian coast in the subtropical NE Atlantic accounts for a significant part of global export production. Although productivity variations in coastal upwelling areas are usually attributed to changes in wind stress and upwelling intensity, productivity dynamics off Mauritania are less straightforward because of the complex atmospheric and hydrographic setting. Here we integrate micropaleontological (diatoms) and geochemical (bulk biogenic sediment components, X-ray fluorescence, and alkenones) proxies to examine on submillennial-to-millennial changes in diatom production that occurred off Mauritania, NW Africa, for the last 25 ka. During the Last Glacial Maximum (LGM, 19.0-23.0 ka B.P.), moderate silicate content of upwelled waters coupled with weakened NE trade winds determined moderate diatom productivity. No significant cooling is observed during the LGM, suggesting that our alkenone-based SST reconstruction represents a local, upwelling-related signal rather than a global insolation related one. Extraordinary increases in diatom and opal concentrations during Heinrich event 1 (H1, 15.5-18.0 ka B.P.) and the Younger Dryas (YD, 13.5-11.5 ka B.P.) are attributed to enhanced upwelling of silica-rich waters and an enlarged upwelling filament, due to more intense NE trade winds. The synchronous increase of CaCO3 and K intensity and the decreased opal and diatoms values mark the occurrence of the Bølling/Allerød (BA, 13.5-15.5 ka B.P.) due to weakened eolian input and more humid conditions on land. Although the high export of diatoms is inextricably linked to upwelling intensity off Mauritania, variability in the nutrient content of the thermocline also plays a decisive role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we present results from sediments collected in the Argentine Basin, a non-steady state depositional marine system characterized by abundant oxidized iron within methane-rich layers due to sediment reworking followed by rapid deposition. Our comprehensive inorganic data set shows that iron reduction in these sulfate and sulfide-depleted sediments is best explained by a microbially mediated process-implicating anaerobic oxidation of methane coupled to iron reduction (Fe-AOM) as the most likely major mechanism. Although important in many modern marine environments, iron-driven AOM may not consume similar amounts of methane compared with sulfate-dependent AOM. Nevertheless, it may have broad impact on the deep biosphere and dominate both iron and methane cycling in sulfate-lean marine settings. Fe-AOM might have been particularly relevant in the Archean ocean, >2.5 billion years ago, known for its production and accumulation of iron oxides (in iron formations) in a biosphere likely replete with methane but low in sulfate. Methane at that time was a critical greenhouse gas capable of sustaining a habitable climate under relatively low solar luminosity, and relationships to iron cycling may have impacted if not dominated methane loss from the biosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Antarctic Intermediate Water (AAIW) is a key player in global-scale oceanic overturning processes and an important conduit for heat, fresh water, and carbon transport. The AAIW past variability is poorly understood mainly due to the lack of sedimentary archives at intermediate water depths. We present records of benthic stable isotopes from sediments retrieved with the seafloor drill rig MARUM-MeBo at 956 m water depth off northern Chile (GeoB15016, 27°29.48'S, 71°07.58'W) that extend back to 970 ka. The sediments at this site are presently deposited at the boundary between AAIW and Pacific Deep Water (PDW). For previous peak interglacials, our results reveal similar benthic d13C values at site GeoB15016 and of a newly generated stack of benthic d13C from various deep Pacific cores representing the "average PDW." This suggests, unlike today, the absence of AAIW at the site and the presence of nearly pure PDW. In contrast, more positive d13C values at site GeoB15016 compared to the stack imply a considerable AAIW contribution during cold phases of interglacials and especially during glacials. Besides, we used three short sediment cores to reconstruct benthic d13C values from the AAIW core during the last glacial and found a d13C signature similar to today's. Assuming that this was the case also for the past 970 kyr, we demonstrate that sea level changes and latitudinal migrations of the AAIW formation site can only account for about 50% of the full range of past d13C increases at site GeoB15016 during cold periods. Other processes that could explain the remaining of the positive d13C anomalies are increases in glacial AAIW production and/or deeper convection of the AAIW with respect to preceding interglacials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report primary production of organic matter and organic carbon removal from three subtropical open ocean time-series stations, two located in the Atlantic and one in the Pacific, to quantify the biological components of the oceanic carbon pump. We find that within subtropical gyres, export production varies considerably despite similar phytoplankton biomass and productivity. We provide evidence that the removal of organic carbon is linked to differences in nutrient input into the mixed layer, both from eddy induced mixing and dinitrogen fixation. These findings contribute to our knowledge of the spatial heterogeneity of the subtropical oceans, which make up more than 50% of all ocean area and are thought to spread in the course of CO2- induced global warming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution percent Corg and delta18Oforam records obtained from Panama Basin core Atlantis II 54-25PC and additional data from nearby core P7 show that enhanced burial of organic carbon has characterized every major glacial period for the last 500 kyr in that area. Both Corg concentration and mass accumulation rate profiles exhibit a sawtooth pattern with maxima occurring typically in the later stages of glacial periods. Comparison with dust records suggests that the carbon accumulation rate profile reflects both the upwelling history and a variable rate of iron input during the late Quaternary. The sawtooth character may derive from increased wind velocities and rates of upwelling during glacials which are indirectly related to ice volume (Sarnthein et al., 1988). The rapid decline in export production at the end of glacials in the equatorial Pacific may be attributed to the retreat of ice sheets (thus reduced wind velocities and upwelling) coupled with a coincident decline in atmospheric dust load and/or delivery rate. The Corg accumulation rate profiles do not correlate well with atmospheric CO2 records. For example, atmospheric CO2 was already at a minimum 40 kyr ago when production in the Panama Basin began increasing dramatically, commensurate with an increase in global dust levels. Using the relationship between the degree of photosynthetic fractionation and the concentration of free CO2 in the surface ocean postulated by Popp et al. (1989), delta13Corg measurements made on core P7 show that Panama Basin surface waters have been supplying CO2 to the atmosphere continually for at least the last 50 kyr. There is no evidence for a flux of CO2 into the surface ocean in this area at any time during this period despite the higher production. If the Panama Basin cores are representative of the eastern and central equatorial Pacific, then these observations weaken the influence on CO2 drawdown postulated for increased glacial productivity at low latitudes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

About one hundred samples of sediments and rocks recovered in Hole 603B were analyzed for type, abundance, and isotopic composition of organic matter, using a combination of Rock-Eval pyrolysis, C-H-N-S elemental analysis, and isotope-ratio mass spectrometry. Concentrations of major, minor, and trace inorganic elements were determined with a combination of X-ray fluorescence and induction-coupled plasma spectrometry. The oldest strata recovered in Hole 603B (lithologic Unit V) consist of interbedded light-colored limestones and marlstones, and black calcareous claystones of Neocomian age. The inorganic and organic geochemical results suggest a very terrigenous aspect to the black claystones. The organic geochemical results indicate that the limestones and marlstones contain a mixture of highly degraded marine and terrestrial organic matter. Comparison of the Neocomian carbonates at Site 603 with those on the other side of the North Atlantic, off Northwest Africa at Site 367, shows that the organic matter at Site 367 contains more marine organic matter, as indicated by higher pyrolysis hydrogen indices and lighter values of d13C. Comparison of inorganic geochemical results for the carbonate lithologies at Site 603 with those for carbonate lithologies at Site 367 suggests that the Site 603 carbonates may contain clastic material from both North American and African sources. The black claystones at Site 603, on the other hand, probably were derived almost entirely from North American clastic sources. Lithologic Unit IV overlying the Neocomian carbonates, consists of interbedded red, green, and black claystones. The black claystones at Site 603 contain more than ten times the organic carbon concentration of the interbedded green claystones. The average concentration of organic carbon in the black claystones (2.8%), however, is low relative to most mid-Cretaceous black claystones and shales in the Atlantic, particularly those found off Northwest Africa. The geochemical data all suggest that the organic matter in the black claystones is more abundant but generally more degraded than the organic matter in the green claystones, and that it was derived mainly from terrestrial sources and deposited in oxygenated bottom waters. The increased percentage of black claystone beds in the upper Cenomanian section, and the presence of more hydrogen-rich organic matter in this part of the section, probably resulted from the increased production and accumulation of marine organic matter that is represented worldwide near the Cenomanian/Turonian boundary in deep-sea and land sections. A few upper Cenomanian black claystone samples that have hydrogen indices > 150 also contain particularly high concentrations of V and Zn. Most samples of black claystone, however, are not particularly metal-rich compared with other black claystones and shales. Compared with red claystones from lithologic Unit IV, the green and black claystones are enriched in many trace transition elements, especially V, Zn, Cu, Co, and Pb. The main difference between the "carbonaceous" claystones of lithologic Unit IV and "variegated" or "multicolored" claystones of the overlying Upper Cretaceous to lower Tertiary Unit III is the absence of black claystone beds. As observed at several other sites (105 and 386), the multicolored claystones at Site 603 are somewhat enriched in several trace transition elements-especially Cu, Ni, and Cr-relative to most deep-sea clays. The multicolored claystones are not enriched in Fe and Mn, and therefore are not "metalliferous" sediments in the sense of those found at several locations in the eastern Pacific. The source of the slightly elevated concentrations of transition metals in the multicolored claystones probably is upward advection and diffusion of metals from the black claystones of the underlying Hatteras Formation. The red, orange, and green claystone beds of lithologic Unit II (Eocene), like those of Unit III, really represent a continuation of deposition of multicolored claystone that began after the deposition of the Neocomian carbonates. The color of the few black beds that occur within this unit results from high concentrations of manganese oxide rather than high concentrations of organic matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in the Southeast Asia monsoon winds and surface circulation patterns since the last glaciation are inferred using multiple paleoceanographic indicators including planktic foraminifer faunal abundances, fauna and alkenones sea-surface temperature (SST) estimates, oxygen and carbon isotopes of planktic and benthic foraminifers, and sedimentary fluxes of carbonates and organic carbon obtained from deep-sea core SCS90-36 from the South China Sea (SCS) (17°59.70'N, 111°29.64'E at water depth 2050 m). All these paleoceanographic evidences indicate marked changes in the SCS ocean system over the last glacial toward the Holocene. Planktic foraminiferal faunal SST estimates show stable warm-season SST of 28.6°C, close to the modern value, throughout the glacial-interglacial cycle. In contrast, cold-season SST increases gradually from 23.6°C in the last glacial to a mean value of 26.4°C in the Holocene with a fluctuation of about 3°C during 13-16 ka. SST estimates by UK'37 method reveal less variability and are in average 1-3°C lower than the fauna-derived winter-season SST. These patterns reveal that the seasonality of the SST is not only higher by about 3-4°C in the glacial, but also a function of the winter season SST. Sedimentation rates decrease from the last glacial-deglacial stage to the Holocene due to a reduction in supply of terrigenous components, which led to an increase of carbonate contents. Total organic carbon (TOC) contents of primarily marine sources decrease from the last glacial-deglacial to the Holocene. The last deglaciation is also characterized by high surface productivity as indicated by increased ketones abundances and high mass accumulation rates (MAR) of the TOC and carbonates. The gradient of planktic foraminifer ocygen and carbon isotopes of between surface dwellers and deep dwellers increases significantly toward Termination I and Holocene, and is indiscernibly small in the carbon isotope gradient of between 14 and 24 ka, revealing a deep-mixing condition in surface layers prior to 10 ka. The glacial-interglacial fluctuation of the carbon isotope value of a benthic foraminifer is 0.61%. which is significantly larger than a global mean value. The large carbon isotope fluctuation indicates an amplification of marginal-sea effects which is most likely resulted from an increase in surface productivity in the northern SCS during the last glacial-deglacial stage. The multiple proxies consistently indicate that the last glacial-deglacial stage winter monsoon in the Southeast Asia was probably strengthened in the northern SCS, leading to a development of deep-mixing surface layer conditions and a more efficient nutrient cycling which supports more marine organic carbon production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proxy records of hydrologic variability in the West Pacific Warm Pool (WPWP) have revealed wide-scale changes in past convective activity in response to orbital and sub-orbital climate forcings. However, attributing proxy responses to regional changes in WPWP hydrology versus local variations in precipitation requires independent records linking the terrestrial and marine realms. We present high-resolution stable isotope, UK'37 sea-surface temperature, X-ray fluorescence (XRF) core scanning and coccolithophore-derived paleoproductivity records covering the past 120 ka from International Marine Global Change (IMAGES) Program Core MD06-3075 (6°29' N, 125°50' E, water depth 1878 m), situated in the Davao Gulf on the southern side of Mindanao. XRF-derived log(Fe/Ca) records provide a robust proxy for runoff-driven sedimentary discharge from Mindanao, whilst past changes in local productivity are associated with variable freshwater runoff and stratification of the surface layer. Significant precessional-scale variability in sedimentary discharge occurred during Marine Isotope Stage (MIS) 5, with peaks in discharge contemporaneous with Northern Hemisphere summer insolation minima. We attribute these changes to the latitudinal migration of the Intertropical Convergence Zone (ITCZ) over the WPWP together with variability in the strength of the Walker circulation acting on precessional timescales. Between 60 and 15 ka sedimentary discharge at Mindanao was muted, displaying little orbital- or millennial-scale variability, likely in response to weakened precessional insolation forcing and lower sea level driving increased subsidence of air masses over the exposed Sunda Shelf. These results highlight the high degree of local variability in the precipitation response to past climate changes in the WPWP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study addresses the problem of diagenetic fractionation of d15N in sedimentary organic matter by constructing isotopic mass balances for the sedimentary nitrogen and pore water ammonium at two Ocean Drilling Program (ODP) sites, 1227 and 1230. At Site 1230, ammonium production flux integrated through the sedimentary column indicates that >60% of organic matter is lost to decomposition. The d15N of pore water ammonium is <0.7 per mil different from that of the sedimentary organic matter, which implies that very little isotopic fractionation is associated with degradation of organic matter at this site. The constant d15N of the solid-phase sedimentary nitrogen through the whole profile supports this conclusion. Atomic C/N ratios (9-12) indicate that organic matter at this site is primarily of marine origin. At Site 1227, the sedimentary organic matter appears to be a mixture of terrestrial and marine components. Ammonium is ~4 heavier than the organic matter. The observed isotopic enrichment of pore water ammonium relative to the sedimentary nitrogen might indicate either the preferential decomposition of isotopically heavier marine fraction of the organic matter, or possibly, a nonsteady-state condition of the ammonium concentration and d15N profiles. Interpretation of the results at Site 1227 is further complicated by the contribution of ammonium with d15N of ~4 per mil that is diffusing upward from Miocene brines.