Inorganic and organic geochemistry and sediment descriptions at DSDP Hole 93-603B
Cobertura |
LATITUDE: 35.495200 * LONGITUDE: -70.028500 * DATE/TIME START: 1983-05-05T00:00:00 * DATE/TIME END: 1983-05-05T00:00:00 |
---|---|
Data(s) |
27/09/1987
|
Resumo |
About one hundred samples of sediments and rocks recovered in Hole 603B were analyzed for type, abundance, and isotopic composition of organic matter, using a combination of Rock-Eval pyrolysis, C-H-N-S elemental analysis, and isotope-ratio mass spectrometry. Concentrations of major, minor, and trace inorganic elements were determined with a combination of X-ray fluorescence and induction-coupled plasma spectrometry. The oldest strata recovered in Hole 603B (lithologic Unit V) consist of interbedded light-colored limestones and marlstones, and black calcareous claystones of Neocomian age. The inorganic and organic geochemical results suggest a very terrigenous aspect to the black claystones. The organic geochemical results indicate that the limestones and marlstones contain a mixture of highly degraded marine and terrestrial organic matter. Comparison of the Neocomian carbonates at Site 603 with those on the other side of the North Atlantic, off Northwest Africa at Site 367, shows that the organic matter at Site 367 contains more marine organic matter, as indicated by higher pyrolysis hydrogen indices and lighter values of d13C. Comparison of inorganic geochemical results for the carbonate lithologies at Site 603 with those for carbonate lithologies at Site 367 suggests that the Site 603 carbonates may contain clastic material from both North American and African sources. The black claystones at Site 603, on the other hand, probably were derived almost entirely from North American clastic sources. Lithologic Unit IV overlying the Neocomian carbonates, consists of interbedded red, green, and black claystones. The black claystones at Site 603 contain more than ten times the organic carbon concentration of the interbedded green claystones. The average concentration of organic carbon in the black claystones (2.8%), however, is low relative to most mid-Cretaceous black claystones and shales in the Atlantic, particularly those found off Northwest Africa. The geochemical data all suggest that the organic matter in the black claystones is more abundant but generally more degraded than the organic matter in the green claystones, and that it was derived mainly from terrestrial sources and deposited in oxygenated bottom waters. The increased percentage of black claystone beds in the upper Cenomanian section, and the presence of more hydrogen-rich organic matter in this part of the section, probably resulted from the increased production and accumulation of marine organic matter that is represented worldwide near the Cenomanian/Turonian boundary in deep-sea and land sections. A few upper Cenomanian black claystone samples that have hydrogen indices > 150 also contain particularly high concentrations of V and Zn. Most samples of black claystone, however, are not particularly metal-rich compared with other black claystones and shales. Compared with red claystones from lithologic Unit IV, the green and black claystones are enriched in many trace transition elements, especially V, Zn, Cu, Co, and Pb. The main difference between the "carbonaceous" claystones of lithologic Unit IV and "variegated" or "multicolored" claystones of the overlying Upper Cretaceous to lower Tertiary Unit III is the absence of black claystone beds. As observed at several other sites (105 and 386), the multicolored claystones at Site 603 are somewhat enriched in several trace transition elements-especially Cu, Ni, and Cr-relative to most deep-sea clays. The multicolored claystones are not enriched in Fe and Mn, and therefore are not "metalliferous" sediments in the sense of those found at several locations in the eastern Pacific. The source of the slightly elevated concentrations of transition metals in the multicolored claystones probably is upward advection and diffusion of metals from the black claystones of the underlying Hatteras Formation. The red, orange, and green claystone beds of lithologic Unit II (Eocene), like those of Unit III, really represent a continuation of deposition of multicolored claystone that began after the deposition of the Neocomian carbonates. The color of the few black beds that occur within this unit results from high concentrations of manganese oxide rather than high concentrations of organic matter. |
Formato |
application/zip, 6 datasets |
Identificador |
https://doi.pangaea.de/10.1594/PANGAEA.789163 doi:10.1594/PANGAEA.789163 |
Idioma(s) |
en |
Publicador |
PANGAEA |
Direitos |
CC-BY: Creative Commons Attribution 3.0 Unported Access constraints: unrestricted |
Fonte |
Supplement to: Dean, Walter E; Arthur, Michael A (1987): Inorganic and organic geochemistry of Eocene to Cretaceous strata recovered from the lower continental rise, North American basin, Site 603, Deep Sea Drilling Project Leg 93. In: van Hinte, JE; Wise, SW Jr; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 93, 1093-1137, doi:10.2973/dsdp.proc.93.146.1987 |
Palavras-Chave | #93-603B; Al2O3; Aluminium oxide; Arsenic; As; Ba; Barium; Be; Beryllium; C/N; CaCO3; Cadmium; Calcium carbonate; Calcium oxide; Calculated; calculated from total Ca concentration; CaO; Carbon, organic, total; Carbon/Nitrogen ratio; Cd; Ce; Cerium; Chromium; Co; Cobalt; Color desc; Color description; Comment; Commun; Communality; Copper; Coupled plasma emission spectrophotometry; Cr; Cu; d13C Corg; Deep Sea Drilling Project; delta 13C, organic carbon; Depth; DEPTH, sediment/rock; Description; determined at University of Rhode Islan; determined at University of Rhode Island; DRILL; Drilling/drill rig; DSDP; Epoch; Factor 1; Factor 2; Factor 3; Factor 4; Fe2O3; Ga; Gallium; Glomar Challenger; HI, HC/TOC; Hydrogen index, mass HC per unit mass total organic carbon; Iron oxide, Fe2O3; K2O; La; Label; Lanthanum; Lead; Leg93; Li; Lithium; Lithologic unit/sequence; LOI; Loss on ignition; Magnesium oxide; Manganese oxide; Mass spectrometer Finnigan Delta-E; Mass spectrometer Finnigan MAT 251; mbsf; Measured; MgO; MnO; Mo; Molybdenum; Na2O; Nb; Nd; Neodymium; Ni; Nickel; Niobium; Nitrogen, total; ODP sample designation; OI, CO2/TOC; Oxygen index, mass CO2 per unit mass total organic carbon; P2O5; Pb; PC1; PC2; PC3; PC4; Phosphorus oxide; PI; Potassium oxide; Production index, S1/(S1+S2); Pyrolysis temperature maximum; Q-mode factor; Rock eval pyrolysis (Behar et al., 2001); S; Sample code/label; Sc; Scandium; see reference(s); Silicon dioxide; SiO2; Sodium oxide; Sr; Strontium; Sulphur, total; Th; Thorium; TiO2; Titanium oxide; Tmax; TN; TOC; Unit; V; Vanadium; Visual description; X-ray fluorescence (XRF); Y; Yb; Ytterbium; Yttrium; Zinc; Zn |
Tipo |
Dataset |