997 resultados para organ formation
Resumo:
The charge and chemical composition of ambient particles in an urban environment were determined using a Neutral Particle and Air Ion Spectrometer and an Aerodyne compact Time-Of-Flight Aerosol Mass Spectrometer. Particle formation and growth events were observed on 20 of the 36 days of sampling, with eight of these events classified as strong. During these events, peaks in the concentration of intermediate and large ions were followed by peaks in the concentration of ammonium and sulphate, which were not observed in the organic fraction. Comparison of days with and without particle formation events revealed that ammonium and sulphate were the dominant species on particle formation days while high concentrations of biomass burning OA inhibited particle growth. Analyses of the degree of particle neutralisation lead us to conclude that an excess of ammonium enabled particle formation and growth. In addition, the large ion concentration increased sharply during particle growth, suggesting that during nucleation the neutral gaseous species ammonia and sulphuric acid react to form ammonium and sulphate ions. Overall, we conclude that the mechanism of particle formation and growth involved ammonia and sulphuric acid, with limited input from organics.
Resumo:
The controlled growth of ultra-small Ge/Si quantum dot (QD) nuclei (≈1 nm) suitable for the synthesis of uniform nanopatterns with high surface coverage, is simulated using atom-only and size non-uniform cluster fluxes. It is found that seed nuclei of more uniform sizes are formed when clusters of non-uniform size are deposited. This counter-intuitive result is explained via adatom-nanocluster interactions on Si(100) surfaces. Our results are supported by experimental data on the geometric characteristics of QD patterns synthesized by nanocluster deposition. This is followed by a description of the role of plasmas as non-uniform cluster sources and the impact on surface dynamics. The technique challenges conventional growth modes and is promising for deterministic synthesis of nanodot arrays.
Resumo:
Cluster ions and charged and neutral nanoparticle concentrations were monitored using a neutral cluster and air ion spectrometer (NAIS) over a period of one year in Brisbane, Australia. The study yielded 242 complete days of usable data, of which particle formation events were observed on 101 days. Small, intermediate and large ion concentrations were evaluated in real time. In the diurnal cycle, small ion concentration was highest during the second half of the night while large ion concentrations were a maximum during the day. The small ion concentration showed a decrease when the large ion concentration increased. Particle formation was generally followed by a peak in the intermediate ion concentration. The rate of increase of intermediate ions was used as the criteria for identifying particle formation events. Such events were followed by a period of growth to larger sizes and usually occurred between 8 am and 2 pm. Particle formation events were found to be related to the wind direction. The gaseous precursors for the production of secondary particles in the urban environment of Brisbane have been shown to be ammonia and sulfuric acid. During these events, the nanoparticle number concentrations in the size range 1.6 to 42 nm, which were normally lower than 1x104 cm-3, often exceeded 5x104 cm-3 with occasional values over 1x105 cm-3. Cluster ions generally occurred in number concentrations between 300 and 600 cm-3 but decreased significantly to about 200 cm-3 during particle formation events. This was accompanied by an increase in the large ion concentration. We calculated the fraction of nanoparticles that were charged and investigated the occurrence of possible overcharging during particle formation events. Overcharging is defined as the condition where the charged fraction of particles is higher than in charge equilibrium. This can occur when cluster ions attach to neutral particles in the atmosphere, giving rise to larger concentrations of charged particles in the short term. Ion-induced nucleation is one of the mechanisms of particle formation in the atmosphere, and overcharging has previously been considered as an indicator of this process. The possible role of ions in particle formation was investigated.
Resumo:
We examine the effect of a kinetic undercooling condition on the evolution of a free boundary in Hele--Shaw flow, in both bubble and channel geometries. We present analytical and numerical evidence that the bubble boundary is unstable and may develop one or more corners in finite time, for both expansion and contraction cases. This loss of regularity is interesting because it occurs regardless of whether the less viscous fluid is displacing the more viscous fluid, or vice versa. We show that small contracting bubbles are described to leading order by a well-studied geometric flow rule. Exact solutions to this asymptotic problem continue past the corner formation until the bubble contracts to a point as a slit in the limit. Lastly, we consider the evolving boundary with kinetic undercooling in a Saffman--Taylor channel geometry. The boundary may either form corners in finite time, or evolve to a single long finger travelling at constant speed, depending on the strength of kinetic undercooling. We demonstrate these two different behaviours numerically. For the travelling finger, we present results of a numerical solution method similar to that used to demonstrate the selection of discrete fingers by surface tension. With kinetic undercooling, a continuum of corner-free travelling fingers exists for any finger width above a critical value, which goes to zero as the kinetic undercooling vanishes. We have not been able to compute the discrete family of analytic solutions, predicted by previous asymptotic analysis, because the numerical scheme cannot distinguish between solutions characterised by analytic fingers and those which are corner-free but non-analytic.
Resumo:
In recent years fine and ultra fine particles emitted from internal combustion engines have attracted an increasing level of attention. This attention has arisen from epidemiological studies conducted by a number of research groups and pointing to the health effects resulting from inhalation of fine particles. Previous studies on the influence of fuel sulfur level on diesel vehicle emissions were mainly concentrated on particle mass emissions. This study aims at investigating the influence of the reduction of diesel fuel sulfur level on the emission and formation of nanoparticles
Resumo:
Cleavage and polyadenylation factor (CPF) is a multi‐protein complex that functions in pre‐mRNA 3′‐end formation and in the RNA polymerase II (RNAP II) transcription cycle. Ydh1p/Cft2p is an essential component of CPF but its precise role in 3′‐end processing remained unclear. We found that mutations in YDH1 inhibited both the cleavage and the polyadenylation steps of the 3′‐end formation reaction in vitro. Recently, we demonstrated that an important function of CPF lies in the recognition of poly(A) site sequences and RNA binding analyses suggesting that Ydh1p/Cft2p interacts with the poly(A) site region. Here we show that mutant ydh1 strains are deficient in the recognition of the ACT1 cleavage site in vivo. The C‐terminal domain (CTD) of RNAP II plays a major role in coupling 3′‐end processing and transcription. We provide evidence that Ydh1p/Cft2p interacts with the CTD of RNAP II, several other subunits of CPF and with Pcf11p, a component of CF IA. We propose that Ydh1p/Cft2p contributes to the formation of important interaction surfaces that mediate the dynamic association of CPF with RNAP II, the recognition of poly(A) site sequences and the assembly of the polyadenylation machinery on the RNA substrate.
Resumo:
MicroRNAs are small non-coding RNAs that mediate post-transcriptional gene silencing. Fear-extinction learning in C57/Bl6J mice led to increased expression of the brain-specific microRNA miR-128b, which disrupted stability of several plasticity-related target genes and regulated formation of fear-extinction memory. Increased miR-128b activity may therefore facilitate the transition from retrieval of the original fear memory toward the formation of a new fear-extinction memory.
Resumo:
We describe here the role of muramidases present in clones of metagenomic DNA that result in cell aggregation and biofilm formation by Escherichia coli. The metagenomic clones were obtained from uncultured Lachnospiraceae-affiliated bacteria resident in the foregut microbiome of the Tammar wallaby. One of these fosmid clones (p49C2) was chosen for more detailed studies and a variety of genetic methods were used to delimit the region responsible for the phenotype to an open reading frame of 1425 bp. Comparative sequence analysis with other fosmid clones giving rise to the same phenotype revealed the presence of muramidase homologues with the same modular composition. Phylogenetic analysis of the fosmid sequence data assigned these fosmid inserts to recently identified, but uncultured, phylogroups of Lachnospiraceae believed to be numerically dominant in the foregut microbiome of the Tammar wallaby. The muramidase is a modular protein containing putative N-acetylmuramoyl--alanine amidase and an endo-β-N-acetylglucosaminidase catalytic module, with a similar organization and functional properties to some Staphylococcal autolysins that also confer adhesive properties and biofilm formation. We also show here that the cloned muramidases result in the production of extracellular DNA, which appears to be the key for biofilm formation and autoaggregation. Collectively, these findings suggest that biofilm formation and cell aggregation in gut microbiomes might occur via the concerted action of carbohydrate-active enzymes and the production of extracellular DNA to serve as a biofilm scaffold.
Resumo:
Escherichia coli is the primary cause of urinary tract infection (UTI) in the developed world. The major factors associated with virulence of uropathogenic E. coli (UPEC) are fimbrial adhesins, which mediate specific attachment to host receptors and trigger innate host responses. Another group of adhesins is represented by the autotransporter (AT) subgroup of proteins. In this study, we identified a new AT-encoding gene, termed upaH, present in a 6.5-kb unannotated intergenic region in the genome of the prototypic UPEC strain CFT073. Cloning and sequencing of the upaH gene from CFT073 revealed an intact 8.535-kb coding region, contrary to the published genome sequence. The upaH gene was widely distributed among a large collection of UPEC isolates as well as the E. coli Reference (ECOR) strain collection. Bioinformatic analyses suggest β-helix as the predominant structure in the large N-terminal passenger (α) domain and a 12-strand β-barrel for the C-terminal β-domain of UpaH. We demonstrated that UpaH is expressed at the cell surface of CFT073 and promotes biofilm formation. In the mouse UTI model, deletion of the upaH gene in CFT073 and in two other UPEC strains did not significantly affect colonization of the bladder in single-challenge experiments. However, in competitive colonization experiments, CFT073 significantly outcompeted its upaH isogenic mutant strain in urine and the bladder.
Resumo:
Technical dinitrotoluene (DNT) is a mixture of 2,4- and 2,6-DNT. In humans, industrial or environmental exposure can occur orally, by inhalation, or by skin contact. The classification of DNT as an 'animal carcinogen' is based on the formation of malignant tumors in kidneys, liver, and mammary glands of rats and mice. Clear signs of toxic nephropathy were found in rats dosed with DNT, and the concept was derived of an interrelation between renal toxicity and carcinogenicity. Recent data point to the carcinogenicity of DNT on the urinary tract of exposed humans. Between 1984 and 1997, 6 cases of urothelial cancer and 14 cases of renal cell cancer were diagnosed in a group of 500 underground mining workers in the copper mining industry of the former GDR and having high exposures to explosives containing technical DNT. The incidences of both urothelial and renal cell tumors in this group were 4.5 and 14.3 times higher, respectively, than anticipated on the basis of the cancer registers of the GDR. The genotyping of all identified tumor patients for the polymorphic enzymes NAT2, GSTM1, and GSTT1 identified the urothelial tumor cases as exclusively 'slow acetylates'. A group of 161 miners highly exposed to DNT was investigated for signs of subclinical renal damage. The exposures were categorized semi-quantitatively into 'low', 'medium', 'high', and 'very high'. A straight dose-dependence of the excretion of urinary biomarker proteins with the ranking of exposure was seen. Biomarker excretion (alpha1-microglobulin, glutathione S-transferases alpha and pi) indicated that DNT-induced damage was directed toward the tubular system. New data on DNT-exposed humans appear consistent with the concept of cancer initiation by DNT isomers and the subsequent promotion of renal carcinogenesis by selective damage to the proximal tubule. The differential pathways of metabolic activation of DNT appear to apply to the proximal tubule of the kidney and to the urothelium of the renal pelvis and lower urinary tract as target tissues of carcinogenicity.
Resumo:
The coffee components kahweol and cafestol (K/C) have been reported to protect the colon and other organs of the rat against the formation of DNA adducts by 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP) and aflatoxin B1. PhIP is a cooked-food mutagen to which significant human exposure and a role in colon cancer etiology are attributed, and, interestingly, such cancers appear to develop at a lower rate in consumers of coffees with high amounts of K/C. Earlier studies in rodent liver have shown that a key role in the chemopreventive effect of K/C is likely to be due to the potential of these compounds to induce the detoxification of xenobiotics by glutathione transferase (GST) and to enhance the synthesis of the corresponding co-factor glutathione. However, mutagens like PhIP may also be detoxified by UDP-glucuronosyl transferase (UDPGT) for which data are lacking regarding a potential effect of K/C. Therefore, in the present study, we investigated the effect of K/C on UDPGT and, concomitantly, we studied overall GST and the pattern of individual GST classes, particularly GST-θ, which was not included in earlier experiments. In addition, we analyzed the organ-dependence of these potentially chemopreventive effects. K/C was fed to male F344 rats at 0.122% in the chow for 10 days. Enzyme activities in liver, kidney, lung, colon, salivary gland, pancreas, testis, heart and spleen were quantified using five characteristic substrates and the hepatic protein pattern of GST classes α, μ, and π was studied with affnity chromatography/HPLC. Our study showed that K/C is not only capable of increasing overall GST and GST classes α, μ, and π but also of enhancing UDGPT and GST-θ. All investigated K/C effects were strongest in liver and kidney, and some response was seen in lung and colon but none in the other organs. In summary, our results show that K/C treatment leads to a wide spectrum of increases in phase II detoxification enzymes. Notably, these effects occurred preferentially in the well perfused organs liver and kidney, which may thus not only contribute to local protection but also to anti-carcinogenesis in distant, less stimulated organs such as the colon.
Resumo:
Introduction Student professional identity formation is important for enabling the successful transition between academic education and professional practice. Recognition of this has resulted in significant changes in professional education (e.g., the inclusion of experiential placements and authentic learning experiences). There is limited research that examines how the curricular experience influences pharmacy studentsʼ professional identity formation. Methods Using focus groups, comprising 82 students from all levels of a four-year Australian undergraduate pharmacy course, this study examined studentsʼ perceptions of their overall curricular experience and examined how these experiences influenced the construction of their professional identities. Results Our analysis found that the pharmacy students struggled with their professional identity formation. Many were entering the degree with little understanding of what being a pharmacist entailed. Once in the educational context, the nature of the role became both apparent and idealistic but not enacted. Students experienced dissonance between the idealistic notion of pharmacy practice and the realities of placements, and this may have been enhanced by a lack of patient-centered care role models. This struggle left them concluding that the role of the pharmacist was constrained and limited. Conclusions We argue that professional identity formation needs to be in the foreground from commencement of the degree and throughout the curriculum.
Resumo:
Carbon nanoscrolls (CNSs) are one of the carbon-based nanomaterials similar to carbon nanotubes (CNTs) but are not widely studied in spite of their great potential applications. Their practical applications are hindered by the challenging fabrication of the CNSs. A physical approach has been proposed recently to fabricate the CNS by rolling up a monolayer graphene nanoribbon (GNR) around a CNT driven by the interaction energy between them. In this study, we perform extensive molecular dynamics (MD) simulations to investigate the various factors that impact the formation of the CNS from GNR. Our simulation results show that the formation of the CNS is sensitive to the length of the CNT and temperature. When the GNR is functionalized with hydrogen, the formation of the CNS is determined by the density and distribution of the hydrogen atoms. Graphyne, the allotrope of graphene, is inferior to graphene in the formation of the CNS due to the weaker bonds and the associated smaller atom density. The mechanism behind the rolling of GNR into CNS lies in the balance between the GNR–CNT van der Waals (vdW) interactions and the strain energy of GNR. The present work reveals new important insights and provides useful guidelines for the fabrication of the CNS.
Resumo:
During fracture healing, many complex and cryptic interactions occur between cells and bio-chemical molecules to bring about repair of damaged bone. In this thesis two mathematical models were developed, concerning the cellular differentiation of osteoblasts (bone forming cells) and the mineralisation of new bone tissue, allowing new insights into these processes. These models were mathematically analysed and simulated numerically, yielding results consistent with experimental data and highlighting the underlying pattern formation structure in these aspects of fracture healing.