359 resultados para numeracy
Resumo:
Open the sports or business section of your daily newspaper, and you are immediately bombarded with an array of graphs, tables, diagrams, and statistical reports that require interpretation. Across all walks of life, the need to understand statistics is fundamental. Given that our youngsters’ future world will be increasingly data laden, scaffolding their statistical understanding and reasoning is imperative, from the early grades on. The National Council of Teachers of Mathematics (NCTM) continues to emphasize the importance of early statistical learning; data analysis and probability was the Council’s professional development “Focus of the Year” for 2007–2008. We need such a focus, especially given the results of the statistics items from the 2003 NAEP. As Shaughnessy (2007) noted, students’ performance was weak on more complex items involving interpretation or application of items of information in graphs and tables. Furthermore, little or no gains were made between the 2000 NAEP and the 2003 NAEP studies. One approach I have taken to promote young children’s statistical reasoning is through data modeling. Having implemented in grades 3 –9 a number of model-eliciting activities involving working with data (e.g., English 2010), I observed how competently children could create their own mathematical ideas and representations—before being instructed how to do so. I thus wished to introduce data-modeling activities to younger children, confi dent that they would likewise generate their own mathematics. I recently implemented data-modeling activities in a cohort of three first-grade classrooms of six year- olds. I report on some of the children’s responses and discuss the components of data modeling the children engaged in.
Resumo:
This article focuses on problem solving activities in a first grade classroom in a typical small community and school in Indiana. But, the teacher and the activities in this class were not at all typical of what goes on in most comparable classrooms; and, the issues that will be addressed are relevant and important for students from kindergarten through college. Can children really solve problems that involve concepts (or skills) that they have not yet been taught? Can children really create important mathematical concepts on their own – without a lot of guidance from teachers? What is the relationship between problem solving abilities and the mastery of skills that are widely regarded as being “prerequisites” to such tasks?Can primary school children (whose toolkits of skills are limited) engage productively in authentic simulations of “real life” problem solving situations? Can three-person teams of primary school children really work together collaboratively, and remain intensely engaged, on problem solving activities that require more than an hour to complete? Are the kinds of learning and problem solving experiences that are recommended (for example) in the USA’s Common Core State Curriculum Standards really representative of the kind that even young children encounter beyond school in the 21st century? … This article offers an existence proof showing why our answers to these questions are: Yes. Yes. Yes. Yes. Yes. Yes. And: No. … Even though the evidence we present is only intended to demonstrate what’s possible, not what’s likely to occur under any circumstances, there is no reason to expect that the things that our children accomplished could not be accomplished by average ability children in other schools and classrooms.
Resumo:
The Pattern and Structure Mathematics Awareness Project (PASMAP) has investigated the development of patterning and early algebraic reasoning among 4 to 8 year olds over a series of related studies. We assert that an awareness of mathematical pattern and structure enables mathematical thinking and simple forms of generalisation from an early age. The project aims to promote a strong foundation for mathematical development by focusing on critical, underlying features of mathematics learning. This paper provides an overview of key aspects of the assessment and intervention, and analyses of the impact of PASMAP on students’ representation, abstraction and generalisation of mathematical ideas. A purposive sample of four large primary schools, two in Sydney and two in Brisbane, representing 316 students from diverse socio-economic and cultural contexts, participated in the evaluation throughout the 2009 school year and a follow-up assessment in 2010. Two different mathematics programs were implemented: in each school, two Kindergarten teachers implemented the PASMAP and another two implemented their regular program. The study shows that both groups of students made substantial gains on the ‘I Can Do Maths’ assessment and a Pattern and Structure Assessment (PASA) interview, but highly significant differences were found on the latter with PASMAP students outperforming the regular group on PASA scores. Qualitative analysis of students’ responses for structural development showed increased levels for the PASMAP students; those categorised as low ability developed improved structural responses over a relatively short period of time.
Resumo:
Chinese Australians consistently outperform their peers in mathematics and according to QUT researcher Michael Mu this is not only because of pushy parents or motivated students.
Resumo:
Historically, perceptions about mathematics and how it is taught and learned in schools have been mixed and as a consequence have an influence on self efficacy. There are those of us who see mathematics as logical and an enjoyable subject to learn, whilst others see mathematics as irrelevant, difficult and contributing to their school failure. Research has shown that over-represented in the latter are Aboriginal and Torres Strait Islander, low SES and ESL students. These students are the focus of YuMi Deadly Centre (YDC) professional learning and research work at the Queensland University of Technology in Brisbane.
Resumo:
This paper reports on a four year Australian Research Council funded Linkage Project titled Skilling Indigenous Queensland, conducted in regional areas of Queensland, Australia from 2009 to 2013. The project sought to investigate vocational education, training (VET) and teaching, Indigenous learners’ needs, employer cultural and expectations and community culture and expectations to identify best practice in numeracy teaching for Indigenous VET learners. Specifically it focused on ways to enhance the teaching and learning of courses and the associated mathematics in such courses to benefit learners and increase their future opportunities of employment. To date thirty-nine teachers/trainers/teacher aides and two hundred and thirty-one students consented to participate in the project. Nine VET courses were nominated to be the focus on the study. This paper focuses on questionnaire and interview responses from four trainers, two teacher aides and six students. In recent years a considerable amount of funding has been allocated to increasing Indigenous Peoples’ participation in education and employment. This increased funding is predicated on the assumption that it will make a difference and contribute to closing the education gap between Indigenous and non-Indigenous Australians (Council of Australia Governments, 2009). The central tenet is that access to education for Indigenous People will create substantial social and economic benefits for regional and remote Indigenous People. The project’s aim is to address some of the issues associated with the gap. To achieve the aims, the project adopted a mixed methods design aimed at benefitting research participants and included: participatory collaborative action research (Kemmis & McTaggart, 1988) and, community research (Smith, 1999). Participatory collaborative action research refers to a is a “collective, self-reflective enquiry undertaken by participants in social situations in order to improve the rationality and justice of their own social and educational practices” (Kemmis et al., 1988, p. 5). Community research is described as an approach that “conveys a much more intimate, human and self-defined space” (p. 127). Community research relies on and validates the community’s own definitions. As the project is informed by the social at a community level, it is described as “community action research or emancipatory research” (Smith, 1999, p. 127). It seeks to demonstrate benefit to the community, making positive differences in the lives of Indigenous People and communities. The data collection techniques included survey questionnaires, video recording of teaching and learning processes, teacher reflective video analysis of teaching, observations, semi-structured interviews and student numeracy testing. As a result of these processes, the findings indicate that VET course teachers work hard to adopt contextualising strategies to their teaching, however this process is not always straight forward because of the perceptions of how mathematics has been taught and learned historically. Further teachers, trainers and students have high expectations of one another with the view to successful outcomes from the courses.
Resumo:
In the 21st century mathematics proficiency is synonymous with a numerate citizenry. In the past few decades young children’s ability to reason mathematically and develop mathematical proficiencies has been recognised. This paper explores the history of early childhood mathematics (ECME) that may explicate differences in Chinese and Australian contexts. Results of this review established that China and Australia are diametrically positioned in ECME. Influencing each countries philosophies and practices are their cultural beliefs. ECME in China and Australia must be culturally sustainable to achieve excellent outcomes for young children. Ongoing critique and review is necessary to ensure that ECME is meeting the needs of all teachers and children in their particular context. China and Australia with their rich contrasting philosophies can assist each other in their journeys to create exemplary ECME for the 21st century.
Resumo:
This is a summative evaluation of the Stronger Smarter Learning Communities (SSLC) project that examines whether and how the SSLC project had an impact on Australian state schools which adopted its models and approaches. Drawing from qualitative and quantitative data sets, it also presents the largest scale and most comprehensive analysis of Indigenous education practices and outcomes to date. It includes empirical findings on: success in changing school ethos and community engagement; challenges in progress at closure of the 'gap' in conventionally measured achievement and performance; schools' and principals' choices in curriculum and instruction; profiles of teachers' and principals' training and views on teacher education; and a strong emphasis on community and school Indigenoous voices and views on Indigenous education.
Resumo:
This paper focuses on very young students' ability to engage in repeating pattern tasks and identifying strategies that assist them to ascertain the structure of the pattern. It describes results of a study which is part of the Early Years Generalising Project (EYGP) and involves Australian students in Years 1 to 4 (ages 5-10). This paper reports on the results from the early years' cohort (Year 1 and 2 students). Clinical interviews were used to collect data concerning students' ability to determine elements in different positions when two units of a repeating pattern were shown. This meant that students were required to identify the multiplicative structure of the pattern. Results indicate there are particular strategies that assist students to predict these elements, and there appears to be a hierarchy of pattern activities that help students to understand the structure of repeating patterns.
Resumo:
An upper primary multiliteracies project based on the children’s book “Pearl Barley and Charlie Parsley” by Aaron Blabey. The main theme explored is same and different.
Resumo:
In Australia, as in some other western nations, governments impose accountability measures on educational institutions (Earl, 2005). One such accountability measure is the National Assessment Program - Literacy and Numeracy (NAPLAN) from which high-stakes assessment data is generated. In this article, a practical method of data analysis known as the Over Time Assessment Data Analysis (OTADA) is offered as an analytical process by which schools can monitor their current and over time performances. This analysis developed by the author, is currently used extensively in schools throughout Queensland. By Analysing in this way, teachers, and in particular principals, can obtain a quick and insightful performance overview. For those seeking to track the achievements and progress of year level cohorts, the OTADA should be considered.
Resumo:
NAPLAN RESULTS HAVE gained socio-political prominence and have been used as indicators of educational outcomes for all students, including Indigenous students. Despite the promise of open and in-depth access to NAPLAN data as a vehicle for intervention, we argue that the use of NAPLAN data as a basis for teachers and schools to reduce variance in learning outcomes is insufficient. NAPLAN tests are designed to show statistical variance at the level of the school and the individual, yet do not factor in the sociocultural and cognitive conditions Indigenous students’ experience when taking the tests. We contend that further understanding of these influences may help teachers understand how to develop their classroom practices to secure better numeracy and literacy outcomes for all students. Empirical research findings demonstrate how teachers can develop their classroom practices from an understanding of the extraneous cognitive load imposed by test taking. We have analysed Indigenous students’ experience of solving mathematical test problems to discover evidence of extraneous cognitive load. We have also explored conditions that are more supportive of learning derived from a classroom intervention which provides an alternative way to both assess and build learning for Indigenous students. We conclude that conditions to support assessment for more equitable learning outcomes require a reduction in cognitive load for Indigenous students while maintaining a high level of expectation and participation in problem solving.
Resumo:
International research provides compelling evidence that school libraries and teacher-librarians make a significant contribution to student literacy and learning outcomes. After summarising previous research, this article presents recent research focused on Gold Coast schools. These new Australian findings present an evidenced based snapshot of school libraries and teacher-librarians, from the principals’ perspective. They indicate that school NAPLAN scores for reading and writing were generally higher when student-to-library staff ratios were lower (i.e. better) and when the school employed a teacher-librarian. In light of the National Plan for School Improvement, the findings are of potential interest to education authorities, policy makers, school leadership teams, teacher-librarians, teachers, parents and researchers. They offer evidence to inform policy development and strategic planning for school libraries and professional staffing.
Resumo:
The purpose of this qualitative interpretative case study was to explore how the National Assessment Program – Literacy and Numeracy (NAPLAN) requirements may be affecting pedagogies of two Year 3, Year 5 and Year 7 teachers at two Queensland schools. The perceived problem was that standardised assessment NAPLAN practices and its growing status as a key measure of education quality throughout Australia has the potential to limit the everyday literacy and numeracy practices of teachers to instructional methods primarily focused on teaching to the test. The findings demonstrate how increased explicit teaching of NAPLAN content and procedural knowledge prior to testing has the potential to negatively impact on the teaching of everyday literacy and numeracy skills and knowledge that extend beyond those concerned with NAPLAN. Such teaching limited opportunity for what teachers reported as valued collaborative learning contexts aiming for long-term literacy and numeracy results.
Resumo:
In the field of education, explicit instruction refers to teacher-‐centred instruction that is focused on clear behavioural and cognitive goals and outcomes. These in turn are made ‘explicit’ or transparent to learners. Sociologist Basil Bernstein defined explicit instruction as featuring “strong classification” and “strong framing”: clearly defined and boundaried knowledge and skills, and teacher-‐directed interaction. Explicit instruction is affiliated with but not limited to highly structured, instruction in basic skills in early literacy and numeracy education. It is also used in Australian genre-‐based approaches to writing that stress the value of “explicit” knowledge of grammar and all textual codes. Several major meta-‐analyses and reviews have identified explicit instruction as a major instructional approach in contemporary schooling...