982 resultados para motion picture
Resumo:
“Made by Motion” is a collaboration between digital artist Paul Van Opdenbosch and performer and choreographer Elise May; a series of studies on captured motion data used to generating experimental visual forms that reverberate in space and time. The project investigates the invisible forces generated by and influencing the movement of a dancer. Along with how the forces can be captured and applied to generating visual outcomes that surpass simple data visualisation, projecting the intent of the performer’s movements. The source or ‘seed’ comes from using an Xsens MVN - Inertial Motion Capture system to capture spontaneous dance movements, with the visual generation conducted through a customised dynamics simulation. In this first series the visual investigation focused on manipulating the movement date at the instance of capture, capture been the recording of three-dimensional movement as ‘seen’ by the hardware and ‘understood’ through the calibration of software. By repositioning the capture hardware on the body we can effectively change how the same sequence of movements is ‘seen’ by the motion capture system thus generating a different visual result from effetely identical movement. The outcomes from the experiments clearly demonstrates the effectiveness of using motion capture hardware as a creative tool to manipulate the perception of the capture subject, in this case been a sequence of dance movements. The creative work exhibited is a cross-section of the experiments conducted in practice with the first animated work (Movement A - Control) using the motion capture hardware in its default ‘normal’ configuration. Following this is the lower body moved to the upper body (Lb-Ub), right arm moved onto the left arm (Ra-La), right leg moved onto the left leg (Rl-Ll) and finally the left leg moved onto a object that is then held in the left hand (Ll-Pf (Lh)).
Resumo:
My practice-led research explores and maps workflows for generating experimental creative work involving inertia based motion capture technology. Motion capture has often been used as a way to bridge animation and dance resulting in abstracted visuals outcomes. In early works this process was largely done by rotoscoping, reference footage and mechanical forms of motion capture. With the evolution of technology, optical and inertial forms of motion capture are now more accessible and able to accurately capture a larger range of complex movements. Made by Motion is a collaboration between digital artist Paul Van Opdenbosch and performer and choreographer Elise May; a series of studies on captured motion data used to generate experimental visual forms that reverberate in space and time. The project investigates the invisible forces generated by and influencing the movement of a dancer. Along with how the forces can be captured and applied to generating visual outcomes that surpass simple data visualisation, projecting the intent of the performer’s movements. The source or ‘seed’ comes from using an Xsens MVN – Inertial Motion Capture system to capture spontaneous dance movements, with the visual generation conducted through a customised dynamics simulation. In my presentation I will be displaying and discussing a selected creative works from the project along with the process and considerations behind the work.
Resumo:
Cell-to-cell adhesion is an important aspect of malignant spreading that is often observed in images from the experimental cell biology literature. Since cell-to-cell adhesion plays an important role in controlling the movement of individual malignant cells, it is likely that cell-to-cell adhesion also influences the spatial spreading of populations of such cells. Therefore, it is important for us to develop biologically realistic simulation tools that can mimic the key features of such collective spreading processes to improve our understanding of how cell-to-cell adhesion influences the spreading of cell populations. Previous models of collective cell spreading with adhesion have used lattice-based random walk frameworks which may lead to unrealistic results, since the agents in the random walk simulations always move across an artificial underlying lattice structure. This is particularly problematic in high-density regions where it is clear that agents in the random walk align along the underlying lattice, whereas no such regular alignment is ever observed experimentally. To address these limitations, we present a lattice-free model of collective cell migration that explicitly incorporates crowding and adhesion. We derive a partial differential equation description of the discrete process and show that averaged simulation results compare very well with numerical solutions of the partial differential equation.
Resumo:
Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This model is used to construct a control policy for navigation to a goal region in a terrain map built using an on-board RGB-D camera. The terrain includes flat ground, small rocks, and non-traversable rocks. We report the results of 200 simulated and 35 experimental trials that validate the approach and demonstrate the value of considering control uncertainty in maintaining platform safety.
Resumo:
Emotions are inherently social, and are central to learning, online interaction and literacy practices (Shen, Wang, & Shen, 2009). Demonstrating the dynamic sociality of literacy practice, we used e-motion diaries or web logs to explore the emotional states of pre-service high school teachers’ experiences of online learning activities. This is because the methods of communication used by university educators in online learning and writing environments play an important role in fulfilling students’ need for social interaction and inclusion (McInnerney & Roberts, 2004). Feelings of isolation and frustration are common emotions experienced by students in many online learning environments, and are associated with the success or failure of online interactions and learning (Su, et al., 2005). The purpose of the study was to answer the research question: What are the trajectories of pre-service teachers’ emotional states during online learning experiences? This is important because emotions are central to learning, and the current trend toward Massive Open Online Courses (MOOCs) needs research about students’ emotional connections in online learning environments (Kop, 2011). The project was conducted with a graduate class of 64 high school science pre-service teachers in Science Education Curriculum Studies in a large Australian university, including males and females from a variety of cultural backgrounds, aged 22-55 years. Online activities involved the students watching a series of streamed live lectures for the first 5 weeks providing a varied set of learning experiences, such as viewing science demonstrations (e.g., modeling the use of discrepant events). Each week, students provided feedback on learning by writing and posting an e-motion diary or web log about their emotional response. Students answered the question: What emotions did you experience during this learning experience? The descriptive data set included 284 online posts, with students contributing multiple entries. Linguistic appraisal theory, following Martin and White (2005), was used to regroup the 22 different discrete emotions reported by students into the six main affect groups – three positive and three negative: unhappiness/happiness, insecurity/security, and dissatisfaction/satisfaction. The findings demonstrated that the pre-service teachers’ emotional responses to the streamed lectures tended towards happiness, security, and satisfaction within the typology of affect groups – un/happiness, in/security, and dis/satisfaction. Fewer students reported that the streamed lectures triggered negative feelings of frustration, powerlessness, and inadequacy, and when this occurred, it often pertained to expectations of themselves in the forthcoming field experience in classrooms. Exceptions to this pattern of responses occurred in relation to the fifth streamed lecture presented in a non-interactive slideshow format that compressed a large amount of content. Many students responded to the content of the lecture rather than providing their emotional responses to this lecture, and one student felt “completely disengaged”. The social practice of online writing as blogs enabled the students to articulate their emotions. The findings primarily contribute new understanding about students' wide range of differing emotional states, both positive and negative, experienced in response to streamed live lectures and other learning activities in higher education external coursework. The is important because the majority of previous studies have focused on particular negative emotions, such as anxiety in test taking. The research also highlights the potentials of appraisal theory for studying human emotions in online learning and writing.
Resumo:
My practice-led research explores and maps workflows for generating experimental creative work involving inertia based motion capture technology. Motion capture has often been used as a way to bridge animation and dance resulting in abstracted visuals outcomes. In early works this process was largely done by rotoscoping, reference footage and mechanical forms of motion capture. With the evolution of technology, optical and inertial forms of motion capture are now more accessible and able to accurately capture a larger range of complex movements. The creative work titled “Contours in Motion” was the first in a series of studies on captured motion data used to generating experimental visual forms that reverberate in space and time. With the source or ‘seed’ comes from using an Xsens MVN - Inertial Motion Capture system to capture spontaneous dance movements, with the visual generation conducted through a customised dynamics simulation. The aim of the creative work was to diverge way from a standard practice of using particle system and/or a simple re-targeting of the motion data to drive a 3d character as a means to produce abstracted visual forms. To facilitate this divergence a virtual dynamic object was tether to a selection of data points from a captured performance. The proprieties of the dynamic object were then adjusted to balance the influences from the human movement data with the influence of computer based randomization. The resulting outcome was a visual form that surpassed simple data visualization to project the intent of the performer’s movements into a visual shape itself. The reported outcomes from this investigation have contributed to a larger study on the use of motion capture in the generative arts, furthering the understanding of and generating theories on practice.
Resumo:
The Design Minds The Big Picture Toolkit was one of six K7-12 secondary school design toolkits commissioned by the State Library of Queensland (SLQ) Asia Pacific Design Library (APDL), to facilitate the delivery of the Stage 1 launch of its Design Minds online platform (www.designminds.org.au) partnership initiative with Queensland Government Arts Queensland and the Smithsonian Cooper-Hewitt National Design Museum, on June 29, 2012. Design Minds toolkits are practical guides, underpinned by a combination of one to three of the Design Minds model phases of ‘Inquire’, ‘Ideate’ and ‘Implement’ (supported by at each stage with structured reflection), to enhance existing school curriculum and empower students with real life design exercises, within the classroom environment. Toolkits directly identify links to Naplan, National Curriculum, C2C and Professional Standards benchmarks, as well as the student capabilities of successful and creative 21st century citizens they seek to engender through design thinking. Inspired by the Unlimited: Designing for the Asia Pacific Generation Workshop 2010 (http://eprints.qut.edu.au/47762/), this toolkit explores, through three distinct exercises, ‘design for the other 90%’, addressing tools and approaches to diverse and changing social, cultural, technological and environmental challenges. The Design Minds The Big Picture Toolkit challenges students to be active agents for change and to think creatively and optimistically about solutions to future global issues that deliver social, economic and environmental benefits. More generally, it aims to facilitate awareness in young people, of the role of design in society and the value of design thinking skills in generating strategies to solve basic to complex systemic challenges, as well as to inspire post-secondary pathways and idea generation for education. The toolkit encourages students and teachers to develop sketching, making, communication, presentation and collaboration skills to improve their design process, as well as explore further inquiry (background research) to enhance the ideation exercises. Exercise 1 focuses on the ‘Inquire’ phase, Exercise 2 the ‘Inquire’ and ‘Ideate’ phases, and Exercise 3 concentrates on the ‘Implement’ phase. Depending on the intensity of the focus, the unit of work could be developed over a 4-5 week program (approximately 4-6 x 60 minute lessons/workshops) or as smaller workshops treated as discrete learning experiences. The toolkit is available for public download from http://designminds.org.au/the-big-picture/ on the Design Minds website.
Resumo:
Motion control systems have a significant impact on the performance of ships and marine structures allowing them to perform tasks in severe sea states and during long periods of time. Ships are designed to operate with adequate reliability and economy, and in order to achieve this, it is essential to control the motion. For each type of ship and operation performed (transit, landing a helicopter, fishing, deploying and recovering loads, etc.), there are not only desired motion settings, but also limits on the acceptable (undesired) motion induced by the environment. The task of a ship motion control system is therefore to act on the ship so it follows the desired motion as closely as possible. This book provides an introduction to the field of ship motion control by studying the control system designs for course-keeping autopilots with rudder roll stabilisation and integrated rudder-fin roll stabilisation. These particular designs provide a good overview of the difficulties encountered by designers of ship motion control systems and, therefore, serve well as an example driven introduction to the field. The idea of combining the control design of autopilots with that of fin roll stabilisers, and the idea of using rudder induced roll motion as a sole source of roll stabilisation seems to have emerged in the late 1960s. Since that time, these control designs have been the subject of continuous and ongoing research. This ongoing interest is a consequence of the significant bearing that the control strategy has on the performance and the issues associated with control system design. The challenges of these designs lie in devising a control strategy to address the following issues: underactuation, disturbance rejection with a non minimum phase system, input and output constraints, model uncertainty, and large unmeasured stochastic disturbances. To date, the majority of the work reported in the literature has focused strongly on some of the design issues whereas the remaining issues have been addressed using ad hoc approaches. This has provided an additional motivation for revisiting these control designs and looking at the benefits of applying a contemporary design framework, which can potentially address the majority of the design issues.
Resumo:
Marine craft (surface vessels, underwater vehicles, and offshore rigs) perform operations that require tight motion control. During the past three decades, there has been an increasing demand for higher accuracy and reliability of marinecraft motion control systems. Today, these control systems are an enabling factor for single and multicraft marine operations. This chapter provides an overview of the main characteristics and design aspects of motion control systems for marine craft. In particular, we discuss the architecture of the control system, the functionality of its main components, the characteristics of environmental disturbances, control objectives, and essential aspects of modeling and motion control design.
Resumo:
This paper reviews some recent results in motion control of marine vehicles using a technique called Interconnection and Damping Assignment Passivity-based Control (IDA-PBC). This approach to motion control exploits the fact that vehicle dynamics can be described in terms of energy storage, distribution, and dissipation, and that the stable equilibrium points of mechanical systems are those at which the potential energy attains a minima. The control forces are used to transform the closed-loop dynamics into a port-controlled Hamiltonian system with dissipation. This is achieved by shaping the energy-storing characteristics of the system, modifying its interconnection structure (how the energy is distributed), and injecting damping. The end result is that the closed-loop system presents a stable equilibrium (hopefully global) at the desired operating point. By forcing the closed-loop dynamics into a Hamiltonian form, the resulting total energy function of the system serves as a Lyapunov function that can be used to demonstrate stability. We consider the tracking and regulation of fully actuated unmanned underwater vehicles, its extension to under-actuated slender vehicles, and also manifold regulation of under-actuated surface vessels. The paper is concluded with an outlook on future research.
Resumo:
As Unmanned Aircraft Systems (UAS) grow in complexity, and their level of autonomy increases|moving away from the concept of a remotely piloted systems and more towards autonomous systems|there is a need to further improve reliability and tolerance to faults. The traditional way to accommodate actuator faults is by using standard control allocation techniques as part of the flight control system. The allocation problem in the presence of faults often requires adding constraints that quantify the maximum capacity of the actuators. This in turn requires on-line numerical optimisation. In this paper, we propose a framework for joint allocation and constrained control scheme via vector input scaling. The actuator configuration is used to map actuator constraints into the space of the aircraft generalised forces, which are the magnitudes demanded by the light controller. Then by constraining the output of controller, we ensure that the allocation function always receive feasible demands. With the proposed framework, the allocation problem does not require numerical optimisation, and since the controller handles the constraints, there is not need to implement heuristics to inform the controller about actuator saturation.
Resumo:
The technical feasibility of roll motion control devices has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of deficiencies in control system designs, which have proven to be far from trivial due to fundamental performance limitations. This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of different models, and control methods that have been applied in the past.
Resumo:
Port-Hamiltonian Systems (PHS) have a particular form that incorporates explicitly a function of the total energy in the system (energy function) and also other functions that describe structure of the system in terms of energy distribution. For PHS, the product of the input and output variables gives the rate of energy change. This type of systems have the property that under certain conditions on the energy function, the system is passive; and thus, stable. Therefore, if one can design a controller such that the closed-loop system retains - or takes - a PHS form, such closed-loop system will inherit the properties of passivity and stability. In this paper, the classical model of marine craft is put into a PHS form. It is shown that models used for positioning control do not have a PHS form due to a kinematic transformation, but a control design can be done such that the closed-loop system takes a PHS form. It is further shown how integral action can be added and how the PHS-form can be exploited to provide a procedure for control design that ensures passivity and thus stability.