829 resultados para light weight design
Resumo:
INTRODUCTION: In common with much of the developed world, Scotland has a severe and well established problem with overweight and obesity in childhood with recent figures demonstrating that 31% of Scottish children aged 2-15 years old were overweight including obese in 2014. This problem is more pronounced in socioeconomically disadvantaged groups and in older children across all economic groups (Scottish Health Survey, 2014). Children who are overweight or obese are at increased risk of a number of adverse health outcomes in the short term and throughout their life course (Lobstein and Jackson-Leach, 2006). The Scottish Government tasked all Scottish Health Boards with developing and delivering child healthy weight interventions to clinically overweight or obese children in an attempt to address this health problem. It is therefore imperative to deliver high quality, affordable, appropriately targeted interventions which can make a sustained impact on children’s lifestyles, setting them up for life as healthy weight adults. This research aimed to inform the design, readiness for application and Health Board suitability of an effective primary school-based curricular child healthy weight intervention. METHODS: the process involved in conceptualising a child healthy weight intervention, developing the intervention, planning for implementation and subsequent evaluation was guided by the PRECEDE-PROCEED Model (Green and Kreuter, 2005) and the Intervention Mapping protocol (Lloyd et al. 2011). RESULTS: The outputs from each stage of the development process were used to formulate a child healthy weight intervention conceptual model then develop plans for delivery and evaluation. DISCUSSION: The Fit for School conceptual model developed through this process has the potential to theoretically modify energy balance related behaviours associated with unhealthy weight gain in childhood. It also has the potential to be delivered at a Health Board scale within current organisational restrictions.
Resumo:
This is a non-final version of an article published in final form in AIDS. 2016 Jul 17;30(11):1691-701.
Resumo:
This paper assesses and compares the performances of two daylight collection strategies, one passive and one active, for large-scale mirrored light pipes (MLP) illuminating deep plan buildings. Both strategies use laser cut panels (LCP) as the main component of the collection system. The passive system comprises LCPs in pyramid form, whereas the active system uses a tiled LCP on a simple rotation mechanism that rotates 360° in 24 hours. Performance is assessed using scale model testing under sunny sky conditions and mathematical modelling. Results show average illuminance levels for the pyramid LCP ranging from 50 to 250 lux and 150 to 200 lux for the rotating LCPs. Both systems improve the performance of a MLP. The pyramid LCP increases the performance of a MLP by 2.5 times and the rotating LCP by 5 times, when compared to an open pipe particularly for low sun elevation angles.
Resumo:
Objects have consequences, seemingly. They move, atomic, formlessly – when static they are seen. That they vibrate constantly, that they are NOW present, is something we will have to trust the physicists on. They only seem here. Now is their moment of form, but later, who knows? Things SEEM when we recognise our own transience and temporary-ness. We call upon a bevy of senses that forever frustrate us with their limitation, despite our little understanding of what we actually have – is this here? So some forms seem to be telling us to trust our senses – that this world IS as it seems. Their form constantly refines and is refined and refined until in its essentialness it cannot be doubted – it absolutely IS. Is this our eyes? Can we only see it? But light is also a particle, if I remember correctly, so there is some weight to seeing. So to SEEM is also to FEEL,as this light imposes its visual weight upon our skins – we see with every pore of our body.
Resumo:
In two experiments, we show that the beliefs women have about the controllability of their weight (i.e., weight locus of control) influences their responses to advertisements featuring a larger-sized female model or a slim female model. Further, we examine self-referencing as a mechanism for these effects. Specifically, people who believe they can control their weight (“internals”), respond most favorably to slim models in advertising, and this favorable response is mediated by self-referencing. In contrast, people who feel powerless about their weight (“externals”), self-reference larger-sized models, but only prefer larger-sized models when the advertisement is for a non-fattening product. For fattening products, they exhibit a similar preference for larger-sized models and slim models. Together, these experiments shed light on the effect of model body size and the role of weight locus of control in influencing consumer attitudes.
Resumo:
Objective: In the majority of exercise intervention studies, the aggregate reported weight loss is often small. The efficacy of exercise as a weight loss tool remains in question. The aim of the present study was to investigate the variability in appetite and body weight when participants engaged in a supervised and monitored exercise programme. ---------- Design: Fifty-eight obese men and women (BMI = 31·8 ± 4·5 kg/m2) were prescribed exercise to expend approximately 2092 kJ (500 kcal) per session, five times a week at an intensity of 70 % maximum heart rate for 12 weeks under supervised conditions in the research unit. Body weight and composition, total daily energy intake and various health markers were measured at weeks 0, 4, 8 and 12. ---------- Results: Mean reduction in body weight (3·2 ± 1·98 kg) was significant (P < 0·001); however, there was large individual variability (−14·7 to +2·7 kg). This large variability could be largely attributed to the differences in energy intake over the 12-week intervention. Those participants who failed to lose meaningful weight increased their food intake and reduced intake of fruits and vegetables. ---------- Conclusion: These data have demonstrated that even when exercise energy expenditure is high, a healthy diet is still required for weight loss to occur in many people.
Resumo:
Until recently, the hot-rolled steel members have been recognized as the most popular and widely used steel group, but in recent times, the use of cold-formed high strength steel members has rapidly increased. However, the structural behavior of light gauge high strength cold-formed steel members characterized by various buckling modes is not yet fully understood. The current cold-formed steel sections such as C- and Z-sections are commonly used because of their simple forming procedures and easy connections, but they suffer from certain buckling modes. It is therefore important that these buckling modes are either delayed or eliminated to increase the ultimate capacity of these members. This research is therefore aimed at developing a new cold-formed steel beam with two torsionally rigid rectangular hollow flanges and a slender web formed using intermittent screw fastening to enhance the flexural capacity while maintaining a minimum fabrication cost. This thesis describes a detailed investigation into the structural behavior of this new Rectangular Hollow Flange Beam (RHFB), subjected to flexural action The first phase of this research included experimental investigations using thirty full scale lateral buckling tests and twenty two section moment capacity tests using specially designed test rigs to simulate the required loading and support conditions. A detailed description of the experimental methods, RHFB failure modes including local, lateral distortional and lateral torsional buckling modes, and moment capacity results is presented. A comparison of experimental results with the predictions from the current design rules and other design methods is also given. The second phase of this research involved a methodical and comprehensive investigation aimed at widening the scope of finite element analysis to investigate the buckling and ultimate failure behaviours of RHFBs subjected to flexural actions. Accurate finite element models simulating the physical conditions of both lateral buckling and section moment capacity tests were developed. Comparison of experimental and finite element analysis results showed that the buckling and ultimate failure behaviour of RHFBs can be simulated well using appropriate finite element models. Finite element models simulating ideal simply supported boundary conditions and a uniform moment loading were also developed in order to use in a detailed parametric study. The parametric study results were used to review the current design rules and to develop new design formulae for RHFBs subjected to local, lateral distortional and lateral torsional buckling effects. Finite element analysis results indicate that the discontinuity due to screw fastening has a noticeable influence only for members in the intermediate slenderness region. Investigations into different combinations of thicknesses in the flange and web indicate that increasing the flange thickness is more effective than web thickness in enhancing the flexural capacity of RHFBs. The current steel design standards, AS 4100 (1998) and AS/NZS 4600 (1996) are found sufficient to predict the section moment capacity of RHFBs. However, the results indicate that the AS/NZS 4600 is more accurate for slender sections whereas AS 4100 is more accurate for compact sections. The finite element analysis results further indicate that the current design rules given in AS/NZS 4600 is adequate in predicting the member moment capacity of RHFBs subject to lateral torsional buckling effects. However, they were inadequate in predicting the capacities of RHFBs subject to lateral distortional buckling effects. This thesis has therefore developed a new design formula to predict the lateral distortional buckling strength of RHFBs. Overall, this thesis has demonstrated that the innovative RHFB sections can perform well as economically and structurally efficient flexural members. Structural engineers and designers should make use of the new design rules and the validated existing design rules to design the most optimum RHFB sections depending on the type of applications. Intermittent screw fastening method has also been shown to be structurally adequate that also minimises the fabrication cost. Product manufacturers and builders should be able to make use of this in their applications.
Resumo:
Overweight and obesity are two of the most important emerging public health issues in our time and regarded by the World Health Organisation [WHO] (1998) as a worldwide epidemic. The prevalence of obesity in the USA is the highest in the world, and Australian obesity rates fall into second place. Currently, about 60% of Australian adults are overweight (BMI „d 25kg/m2). The socio-demographic factors associated with overweight and/or obesity have been well demonstrated, but many of the existing studies only examined these relationships at one point of time, and did not examine whether significant relationships changed over time. Furthermore, only limited previous research has examined the issue of the relationship between perception of weight status and actual weight status, as well as factors that may impact on people¡¦s perception of their body weight status. Aims: The aims of the proposed research are to analyse the discrepancy between perceptions of weight status and actual weight status in Australian adults; to examine if there are trends in perceptions of weight status in adults between 1995 to 2004/5; and to propose a range of health promotion strategies and furth er research that may be useful in managing physical activity, healthy diet, and weight reduction. Hypotheses: Four alternate hypotheses are examined by the research: (1) there are associations between independent variables (e.g. socio -demographic factors, physical activity and dietary habits) and overweight and/or obesity; (2) there are associations between the same independent variables and the perception of overweight; (3) there are associations between the same independent variables and the discrepancy between weight status and perception of weight status; and (4) there are trends in overweight and/or obesity, perception of overweight, and the discrepancy in Australian adults from 1995 to 2004/5. Conceptual Framework and Methods: A conceptual framework is developed that shows the associations identified among socio -demographic factors, physical activity and dietary habits with actual weight status, as well as examining perception of weight status. The three latest National Health Survey data bases (1995 , 2001 and 2004/5) were used as the primary data sources. A total of 74,114 Australian adults aged 20 years and over were recruited from these databases. Descriptive statistics, bivariate analyses (One -Way ANOVA tests, unpaired t-tests and Pearson chi-square tests), and multinomial logistic regression modelling were used to analyse the data. Findings: This research reveals that gender, main language spoken at home, occupation status, household structure, private health insurance status, and exercise are related to the discrepancy between actual weight status and perception of weight status, but only gender and exercise are related to the discrepancy across the three time point s. The current research provides more knowledge about perception of weight status independently. Factors which affect perception of overweight are gender, age, language spoken at home, private health insurance status, and diet ary habits. The study also finds that many factors that impact overweight and/or obesity also have an effect on perception of overweight, such as age, language spoken at home, household structure, and exercise. However, some factors (i.e. private health insurance status and milk consumption) only impact on perception of overweight. Furthermore, factors that are rel ated to people’s overweight are not totally related to people’s underestimation of their body weight status in the study results. Thus, there are unknown factors which can affect people’s underestimation of their body weight status. Conclusions: Health promotion and education activities should provide education about population health education and promotion and education for particular at risk sub -groups. Further research should take the form of a longitudinal study design ed to examine the causal relationship between overweight and/or obesity and underestimation of body weight status, it should also place more attention on the relationships between overweight and/or obesity and dietary habits, with a more comprehensive representation of SES. Moreover, further research that deals with identification of characteristics about perception of weight status, in particular the underestimation of body weight status should be undertaken.
Resumo:
In recent times, light gauge cold-formed steel sections have been used extensively as primary load bearing structural members in many applications in the building industry. Fire safety design of structures using such sections has therefore become more important. Deterioration of mechanical properties of yield stress and elasticity modulus is considered the most important factor affecting the performance of steel structures in fires. Hence there is a need to fully understand the mechanical properties of light gauge cold-formed steels at elevated temperatures. A research project based on experimental studies was therefore undertaken to investigate the deterioration of mechanical properties of light gauge cold-formed steels. Tensile coupon tests were undertaken to determine the mechanical properties of these steels made of both low and high strength steels and thicknesses of 0.60, 0.80 and 0.95 mm at temperatures ranging from 20 to 800ºC. Test results showed that the currently available reduction factors are unsafe to use in the fire safety design of cold-formed steel structures. Therefore new predictive equations were developed for the mechanical properties of yield strength and elasticity modulus at elevated temperatures. This paper presents the details of the experimental study, and the results including the developed equations. It also includes details of a stress-strain model for light gauge cold-formed steels at elevated temperatures.
Resumo:
In recent times, light gauge cold-formed steel sections have been used extensively since they have a very high strength to weight ratio compared with thicker hot-rolled steel sections. However, they are susceptible to various buckling modes including a distortional mode and hence show complex behaviour under fire conditions. Therefore a research project based on detailed experimental studies was undertaken to investigate the distortional buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. More than 150 axial compression tests were undertaken at uniform ambient and elevated temperatures. Two types of cross sections were selected with nominal thicknesses of 0.60, 0.80, and 0.95 mm. Both low (G250) and high (G550) strength steels were used. Distortional buckling tests were conducted at six different temperatures in the range of 20 to 800°C. The ultimate loads of compression members subject to distortional buckling were then used to review the adequacy of the current design rules at ambient and elevated temperatures. This paper presents the details of this experimental study and the results.
Resumo:
Fire design is an essential element of the overall design procedure of structural steel members and systems. Conventionally the fire rating of load-bearing stud wall systems made of light gauge steel frames (LSF) is based on approximate prescriptive methods developed on the basis of limited fire tests. This design is limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to the stud walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these light gauge steel stud wall systems. Hence a detailed fire research study into the performance and effectiveness of a recently developed innovative composite panel wall system was undertaken at Queensland University of Technology using both full scale fire tests and numerical studies. Experimental results of LSF walls using the new composite panels under axial compression load have shown the improvement in fire performance and fire resistance rating. Numerical analyses are currently being undertaken using the finite element program ABAQUS. Measured temperature profiles of the studs are used in the numerical models and the results are used to calibrate against full scale test results. The validated model will be used in a detailed parametric study with an aim to develop suitable design rules within the current cold-formed steel structures and fire design standards. This paper will present the results of experimental and numerical investigations into the structural and fire behaviour of light gauge steel stud walls protected by the new composite panel. It will demonstrate the improvements provided by the new composite panel system in comparison to traditional wall systems.
Resumo:
Cold-formed steel members can be assembled in various combinations to provide cost-efficient and safe light gauge floor systems for buildings. Such Light gauge Steel Framing (LSF) systems are widely accepted in industrial and commercial building construction. An example application is in floor-ceiling systems. Light gauge steel floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire-rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite floor-ceiling system has been developed to provide higher fire rating under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Therefore a research project was carried out to investigate its structural and fire resistance behaviour under standard fire conditions. In this research project full scale experimental tests of the new LSF floor system based on a composite ceiling unit were undertaken using a gas furnace at the Queensland University of Technology. Both the conventional and the new steel floor-ceiling systems were tested under structural and fire loads. Full scale fire tests provided a good understanding of the fire behaviour of the LSF floor-ceiling systems and confirmed the superior performance of the new composite system. This paper presents the details of this research into the structural and fire behaviour of light gauge steel floor systems protected by the new composite panel, and the results.
Resumo:
Light gauge steel frame (LSF) structures are increasingly used in commercial and residential buildings because of their non-combustibility, dimensional stability and ease of installation. A common application is in floor-ceiling systems. The LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire-rated floor-ceiling assemblies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite floor-ceiling system has been developed to provide higher fire rating. But its increased fire rating could not be determined using the currently available design methods. Therefore a research project was conducted to investigate its structural and fire resistance behaviour under standard fire conditions. This paper presents the results of full scale experimental investigations into the structural and fire behaviour of the new LSF floor system protected by the composite ceiling unit. Both the conventional and the new floor systems were tested under structural and fire loads. It demonstrates the improvements provided by the new composite panel system in comparison to conventional floor systems. Numerical studies were also undertaken using the finite element program ABAQUS. Measured temperature profiles of floors were used in the numerical analyses and their results were compared with fire test results. Tests and numerical studies provided a good understanding of the fire behaviour of the LSF floor-ceiling systems and confirmed the superior performance of the new composite system.
Resumo:
A promenade performance. This research produced a unique combination of performance using electronically augmented costuming, site-specific discrete electronic lighting and video projection and sustained mountainside/top choreography. The work was examined and expanded in two subsequent peer reviewed papers which scoped out the emerging field of ‘Grounded Media’. Curator and writer Kevin Murray further accorded and enhanced these ideas in subsequent critical writing and the work was also featured in a two page major profile in RealtimeThe work was commissioned by the long established Floating Land Festival and involved extensive on-site work as well as a residency, production and artist talk series at the Noosa Art Gallery. A documentary film of the work was subsequently presented in the three-month exhibition ‘Lines of Sight’ for the Nishi Ogi Machi Media Festival, Nishiogikubo Station Platform 1, Tokyo, Japan, curated by Youkobo Art Space.
Resumo:
Cold-formed steel members are extensively used in the building construction industry, especially in residential, commercial and industrial buildings. In recent times, fire safety has become important in structural design due to increased fire damage to properties and loss of lives. However, past research into the fire performance of cold-formed steel members has been limited, and was confined to compression members. Therefore a research project was undertaken to investigate the structural behaviour of compact cold-formed steel lipped channel beams subject to inelastic local buckling and yielding, and lateral-torsional buckling effects under simulated fire conditions and associated section and member moment capacities. In the first phase of this research, an experimental study based on tensile coupon tests was undertaken to obtain the mechanical properties of elastic modulus and yield strength and the stress-strain relationship of cold-formed steels at uniform ambient and elevated temperatures up to 700oC. The mechanical properties deteriorated with increasing temperature and are likely to reduce the strength of cold-formed beams under fire conditions. Predictive equations were developed for yield strength and elastic modulus reduction factors while a modification was proposed for the stressstrain model at elevated temperatures. These results were used in the numerical modelling phases investigating the section and member moment capacities. The second phase of this research involved the development and validation of two finite element models to simulate the behaviour of compact cold-formed steel lipped channel beams subject to local buckling and yielding, and lateral-torsional buckling effects. Both models were first validated for elastic buckling. Lateral-torsional buckling tests of compact lipped channel beams were conducted at ambient temperature in order to validate the finite element model in predicting the non-linear ultimate strength behaviour. The results from this experimental study did not agree well with those from the developed experimental finite element model due to some unavoidable problems with testing. However, it highlighted the importance of magnitude and direction of initial geometric imperfection as well as the failure direction, and thus led to further enhancement of the finite element model. The finite element model for lateral-torsional buckling was then validated using the available experimental and numerical ultimate moment capacity results from past research. The third phase based on the validated finite element models included detailed parametric studies of section and member moment capacities of compact lipped channel beams at ambient temperature, and provided the basis for similar studies at elevated temperatures. The results showed the existence of inelastic reserve capacity for compact cold-formed steel beams at ambient temperature. However, full plastic capacity was not achieved by the mono-symmetric cold-formed steel beams. Suitable recommendations were made in relation to the accuracy and suitability of current design rules for section moment capacity. Comparison of member capacity results from finite element analyses with current design rules showed that they do not give accurate predictions of lateral-torsional buckling capacities at ambient temperature and hence new design rules were developed. The fourth phase of this research investigated the section and member moment capacities of compact lipped channel beams at uniform elevated temperatures based on detailed parametric studies using the validated finite element models. The results showed the existence of inelastic reserve capacity at elevated temperatures. Suitable recommendations were made in relation to the accuracy and suitability of current design rules for section moment capacity in fire design codes, ambient temperature design codes as well as those proposed by other researchers. The results showed that lateral-torsional buckling capacities are dependent on the ratio of yield strength and elasticity modulus reduction factors and the level of non-linearity in the stress-strain curves at elevated temperatures in addition to the temperature. Current design rules do not include the effects of non-linear stress-strain relationship and therefore their predictions were found to be inaccurate. Therefore a new design rule that uses a nonlinearity factor, which is defined as the ratio of the limit of proportionality to the yield stress at a given temperature, was developed for cold-formed steel beams subject to lateral-torsional buckling at elevated temperatures. This thesis presents the details and results of the experimental and numerical studies conducted in this research including a comparison of results with predictions using available design rules. It also presents the recommendations made regarding the accuracy of current design rules as well as the new developed design rules for coldformed steel beams both at ambient and elevated temperatures.