973 resultados para late onset cancer
Resumo:
The genetics of Alzheimer disease (AD) are complex and not completely understood. Mutations in the amyloid precursor protein gene (APP) can cause early-onset autosomal dominant AD. In vitro studies indicate that cells expressing mutant APPs overproduce pathogenic forms of the A beta peptide, the major component of AD amyloid. However, mutations in the APP gene are responsible for 5% or less of all early-onset familial AD. A locus on chromosome 14 is responsible for AD in other early-onset AD families and represents the most severe form of the disease in terms of age of onset and rate of decline. Attempts to identify the AD3 gene by positional cloning methods are underway. At least one additional early-onset AD locus remains to be located. In late-onset AD, the apolipoprotein E gene allele epsilon 4 is a risk factor for AD. This allele appears to act as a dose-dependent age-of-onset modifier. The epsilon 2 allele of this gene may be protective. Other late-onset susceptibility factors remain to be identified.
Resumo:
Severe mitochondrial genetic mutations lead to early degeneration of specific human tissues; milder mitochondrial mutations may cause degeneration at a later point in life. A mutation at position 4336 was reported to occur at increased frequency in individuals with Alzheimer disease (AD) and Parkinson disease [Shoffner, J. M., Brown, M. D., Torroni, A., Lott, M. T., Cabell, M. F., Mirra, S. S., Beal, M. F., Yang, C.-C., Gearing, M., Salvo, R., Watts, R. L., Juncos, J. L., Hansen, L. A., Crain, B. J., Fayad, M., Reckord, C. L. & Wallace, D. C. (1993) Genomics 17, 171-184]. We have investigated the notion that this mutation leads to excess risk of AD by using a case-control study design of 72 AD autopsies and 296 race- and age-matched controls. The 4336G mutation occurred at higher frequency in AD autopsies than age-matched controls, a statistically significant difference. Evolutionary analysis of mtDNAs bearing the 4336G mutation indicated they were more closely related to each other than to other mtDNAs, consistent with the model of a single origin for this mutation. The tight evolutionary relatedness and homoplasmy of mtDNAs that confer elevated risk for a late-onset disease contrast strikingly with the distant relatedness and heteroplasmy of mitochondrial genomes that cause early-onset disease. The dichotomy can be explained by a lack of selection against mutations that confer a phenotype at advanced age during most of the evolution of humans. We estimate that approximately 1.5 million Caucasians in the United States bear the 4336G mutation and are at significantly increased risk of developing mitochondrial AD in their lifetime. A mechanism for 4336G-mediated cell death is proposed.
Resumo:
Inheritance of specific apolipoprotein E (apoE) alleles determines, in large part, the risk and mean age of onset of late-onset familial and sporadic Alzheimer disease. The mechanism by which the apoE isoforms differentially contribute to disease expression is, however, unknown. Isoform-specific differences have been identified in the binding of apoE to the microtubule-associated protein tau, which forms the paired helical filament and neurofibrillary tangles, and to amyloid beta peptide, a major component of the neuritic plaque. These and other isoform-specific interactions of apoE give rise to testable hypotheses for the mechanism(s) of pathogenesis of Alzheimer disease. An unresolved issue of increasing importance is the relationship between the structural pathological lesions and the cellular pathogenesis responsible for the clinical disease phenotype, progressive dementia. The identification of apoE in the cytoplasm of human neurons and the characterization of isoform-specific binding of apoE to the microtubule-associated proteins tau and MAP-2 present the possibility that apoE may affect microtubule function in the Alzheimer brain.
Resumo:
Ceruloplasmin is an abundant alpha 2-serum glycoprotein that contains 95% of the copper found in the plasma of vertebrate species. We report here on the identification of a genetic defect in the ceruloplasmin gene in a patient previously noted to have a total absence of circulating serum ceruloplasmin in association with late-onset retinal and basal ganglia degeneration. In this patient T2 (transverse relaxation time)-weighted magnetic resonance imaging of the brain revealed basal ganglia densities consistent with iron deposition, and liver biopsy confirmed the presence of excess iron. Although Southern blot analysis of the patient's DNA was normal, PCR amplification of 18 of the 19 exons composing the human ceruloplasmin gene revealed a distinct size difference in exon 7. DNA sequence analysis of this exon revealed a 5-bp insertion at amino acid 410, resulting in a frame-shift mutation and a truncated open reading frame. The validity of this mutation was confirmed by analysis of DNA from the patient's daughter, which revealed heterozygosity for this same 5-bp insertion. The presence of this mutation in conjunction with the clinical and pathologic findings demonstrates an essential role for ceruloplasmin in human biology and identifies aceruloplasminemia as an autosomal recessive disorder of iron metabolism. These findings support previous studies that identified ceruloplasmin as a ferroxidase and are remarkably consistent with recent studies on the essential role of a homologous copper oxidase in iron metabolism in yeast. The clinical and laboratory findings suggest that additional patients with movement disorders and nonclassical Wilson disease should be examined for ceruloplasmin gene mutations.
Resumo:
Purpose. Mice rendered hypoglycemic by a null mutation in the glucagon receptor gene Gcgr display late-onset retinal degeneration and loss of retinal sensitivity. Acute hyperglycemia induced by dextrose ingestion does not restore their retinal function, which is consistent with irreversible loss of vision. The goal of this study was to establish whether long-term administration of high dietary glucose rescues retinal function and circuit connectivity in aged Gcgr−/− mice. Methods. Gcgr−/− mice were administered a carbohydrate-rich diet starting at 12 months of age. After 1 month of treatment, retinal function and structure were evaluated using electroretinographic (ERG) recordings and immunohistochemistry. Results. Treatment with a carbohydrate-rich diet raised blood glucose levels and improved retinal function in Gcgr−/− mice. Blood glucose increased from moderate hypoglycemia to euglycemic levels, whereas ERG b-wave sensitivity improved approximately 10-fold. Because the b-wave reflects the electrical activity of second-order cells, we examined for changes in rod-to-bipolar cell synapses. Gcgr−/− retinas have 20% fewer synaptic pairings than Gcgr+/− retinas. Remarkably, most of the lost synapses were located farthest from the bipolar cell body, near the distal boundary of the outer plexiform layer (OPL), suggesting that apical synapses are most vulnerable to chronic hypoglycemia. Although treatment with the carbohydrate-rich diet restored retinal function, it did not restore these synaptic contacts. Conclusions. Prolonged exposure to diet-induced euglycemia improves retinal function but does not reestablish synaptic contacts lost by chronic hypoglycemia. These results suggest that retinal neurons have a homeostatic mechanism that integrates energetic status over prolonged periods of time and allows them to recover functionality despite synaptic loss.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Cytomegalovirus (CMV) is a highly complex pathogen which, despite modern prophylactic regimens, continues to affect a high proportion of thoracic organ transplant recipients. The symptomatic manifestations of CMV infection are compounded by adverse indirect effects induced by the multiple immunomodulatory actions of CMV. These include a higher risk of acute rejection, cardiac allograft vasculopathy after heart transplantation, and potentially bronchiolitis obliterans syndrome in lung transplant recipients, with a greater propensity for opportunistic secondary infections. Prophylaxis for CMV using antiviral agents (typically oral valganciclovir or intravenous ganciclovir) is now almost universal, at least in high-risk transplants (D+/R-). Even with extended prophylactic regimens, however, challenges remain. The CMV events can still occur despite antiviral prophylaxis, including late-onset infection or recurrent disease, and patients with ganciclovir-resistant CMV infection or who are intolerant to antiviral therapy require alternative strategies. The CMV immunoglobulin (CMVIG) and antiviral agents have complementary modes of action. High-titer CMVIG preparations provide passive CMV-specific immunity but also exert complex immunomodulatory properties which augment the antiviral effect of antiviral agents and offer the potential to suppress the indirect effects of CMV infection. This supplement discusses the available data concerning the immunological and clinical effects of CMVIG after heart or lung transplantation
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Because the determinants of anxiety and depression in late adolescence and early adulthood may differ from those in later life, we investigated the temporal stability and magnitude of genetic and environmental correlates of symptoms of anxiety and depression across the life span. Data were collected from a population-based Australian sample of 4364 complete twin pairs and 777 singletons aged 20 to 96 years who were followed-up over three studies between 1980 and 1996. Each study contained the 14-item self-report DSSI/sAD scale which was used to measure recently experienced symptoms of anxiety and depression. Symptom scores were then divided and assigned to age intervals according to each subject's age at time of participation. We fitted genetic simplex models to take into account the longitudinal nature of the data. For male anxiety and depression, the best fitting simplex models comprised a single genetic innovation at age 20 which was transmitted, and explained genetic variation in anxiety and depression at ages 30, 40, 50 and 60. Most of the lifetime genetic variation in female anxiety and depression could also be explained by innovations at age 20 which were transmitted to all other ages; however, there were also smaller age-dependent genetic innovations at 30 for anxiety and at 40 and 70 for depression. Although the genetic determinants of anxiety and depression appear relatively stable across the life-span for males and females, there is some evidence to support additional mid-life and late age gene action in females for depression. The fact that mid-life onset for anxiety occurs one decade before depression is also consistent with a causal relationship (anxiety leading to depression) between these conditions. These findings have significance for large scale depression prevention projects.
Resumo:
A primary haplotype (H1) of the microtubule-associated protein Tau (MAPT) gene is associated with Parkinson's disease (PD). However, the mechanism for disease susceptibility remains unknown. We examined the promoter region of MAPT and identified single nucleotide polymorphisms and insertions of 1 to 11 nucleotides. These polymorphisms corresponded to the previously characterized haplotypes, H1 and H2, as well as a novel variant of the H1 haplotype, H1'. As observed in other studies, we demonstrated a significant association with the H1/H1 promoter genotype and PD in a cohort of 206 idiopathic late-onset cases. This is in contrast with a panel of 13 early-onset PD patients, for whom we did not detect any mutations in MAPT. By examining single nucleotide polymorphisms in adjacent genes, we showed that linkage disequilibrium does not extend beyond the MAPT haplotype to neighboring genes. To define the mechanism of disease susceptibility, we examined the transcriptional activity of the promoter haplotypes using a luciferase reporter assay. We demonstrated in two human cell lines, SK-N-MC and 293, that the H1 haplotype was more efficient at driving gene expression than the H2 haplotype. Our data suggest that an increase in expression of the MAPT gene is a susceptibility factor in idiopathic PD.
Resumo:
A culster analysis was performed on 78 cases of Alzheimer's disease (AD) to identify possible pathological subtypes of the disease. Data on 47 neuropathological variables, inculding features of the gross brain and the density and distribution of senile plaques (SP) and neurofibrillary tangles (NFT) were used to describe each case. Cluster analysis is a multivariate statistical method which combines together in groups, AD cases with the most similar neuropathological characteristics. The majority of cases (83%) were clustered into five such groups. The analysis suggested that an initial division of the 78 cases could be made into two major groups: (1) a large group (68%) in which the distribution of SP and NFT was restricted to a relatively small number of brain regions, and (2) a smaller group (15%) in which the lesions were more widely disseminated throughout the neocortex. Each of these groups could be subdivided on the degree of capillary amyloid angiopathy (CAA) present. In addition, those cases with a restricted development of SP/NFT and CAA could be divided further into an early and a late onset form. Familial AD cases did not cluster as a separate group but were either distributed between four of the five groups or were cases with unique combinations of pathological features not closely related to any of the groups. It was concluded that multivariate statistical methods may be of value in the classification of AD into subtypes. © 1994 Springer-Verlag.
Resumo:
Three hypotheses have been proposed to explain neuropathological heterogeneity in Alzheimer's disease (AD): the presence of distinct subtypes ('subtype hypothesis'), variation in the stage of the disease ('phase hypothesis') and variation in the origin and progression of the disease ('compensation hypothesis'). To test these hypotheses, variation in the distribution and severity of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in 80 cases of AD using principal components analysis (PCA). Principal components analysis using the cases as variables (Q-type analysis) suggested that individual differences between patients were continuously distributed rather than the cases being clustered into distinct subtypes. In addition, PCA using the abundances of SP and NFT as variables (R-type analysis) suggested that variations in the presence and abundance of lesions in the frontal and occipital lobes, the cingulate gyrus and the posterior parahippocampal gyrus were the most important sources of heterogeneity consistent with the presence of different stages of the disease. In addition, in a subgroup of patients, individual differences were related to apolipoprotein E (ApoE) genotype, the presence and severity of SP in the frontal and occipital cortex being significantly increased in patients expressing apolipoprotein (Apo)E allele ε4. It was concluded that some of the neuropathological heterogeneity in our AD cases may be consistent with the 'phase hypothesis'. A major factor determining this variation in late-onset cases was ApoE genotype with accelerated rates of spread of the pathology in patients expressing allele ε4.
Resumo:
Neuronal operations associated with the top-down control process of shifting attention from one locus to another involve a network of cortical regions, and their influence is deemed fundamental to visual perception. However, the extent and nature of these operations within primary visual areas are unknown. In this paper, we used magnetoencephalography (MEG) in combination with magnetic resonance imaging (MRI) to determine whether, prior to the onset of a visual stimulus, neuronal activity within early visual cortex is affected by covert attentional shifts. Time/frequency analyses were used to identify the nature of this activity. Our results show that shifting attention towards an expected visual target results in a late-onset (600 ms postcue onset) depression of alpha activity which persists until the appearance of the target. Independent component analysis (ICA) and dipolar source modeling confirmed that the neuronal changes we observed originated from within the calcarine cortex. Our results further show that the amplitude changes in alpha activity were induced not evoked (i.e., not phase-locked to the cued attentional task). We argue that the decrease in alpha prior to the onset of the target may serve to prime the early visual cortex for incoming sensory information. We conclude that attentional shifts affect activity within the human calcarine cortex by altering the amplitude of spontaneous alpha rhythms and that subsequent modulation of visual input with attentional engagement follows as a consequence of these localized changes in oscillatory activity. © 2005 Elsevier B.V. All rights reserved.