954 resultados para laser terminal level lifetime
Resumo:
卫星激光通信具有巨大的潜在应用价值, 国际上已实现高码率、小型化、轻量化和低功耗激光通信终端, 全文的第一部分即“链路和终端技术”综述了卫星激光通信的国外进展, 介绍了终端的关键技术, 讨论了终端设计思想。第二部分(另文)将讨论和介绍卫星激光通信终端地面检测和验证技术。
Resumo:
Theoretical and experimental studies of a gas laser amplifier are presented, assuming the amplifier is operating with a saturating optical frequency signal. The analysis is primarily concerned with the effects of the gas pressure and the presence of an axial magnetic field on the characteristics of the amplifying medium. Semiclassical radiation theory is used, along with a density matrix description of the atomic medium which relates the motion of single atoms to the macroscopic observables. A two-level description of the atom, using phenomenological source rates and decay rates, forms the basis of our analysis of the gas laser medium. Pressure effects are taken into account to a large extent through suitable choices of decay rate parameters.
Two methods for calculating the induced polarization of the atomic medium are used. The first method utilizes a perturbation expansion which is valid for signal intensities which barely reach saturation strength, and it is quite general in applicability. The second method is valid for arbitrarily strong signals, but it yields tractable solutions only for zero magnetic field or for axial magnetic fields large enough such that the Zeeman splitting is much larger than the power broadened homogeneous linewidth of the laser transition. The effects of pressure broadening of the homogeneous spectral linewidth are included in both the weak-signal and strong-signal theories; however the effects of Zeeman sublevel-mixing collisions are taken into account only in the weak-signal theory.
The behavior of a He-Ne gas laser amplifier in the presence of an axial magnetic field has been studied experimentally by measuring gain and Faraday rotation of linearly polarized resonant laser signals for various values of input signal intensity, and by measuring nonlinearity - induced anisotropy for elliptically polarized resonant laser signals of various input intensities. Two high-gain transitions in the 3.39-μ region were used for study: a J = 1 to J = 2 (3s2 → 3p4) transition and a J = 1 to J = 1 (3s2 → 3p2) transition. The input signals were tuned to the centers of their respective resonant gain lines.
The experimental results agree quite well with corresponding theoretical expressions which have been developed to include the nonlinear effects of saturation strength signals. The experimental results clearly show saturation of Faraday rotation, and for the J = 1 t o J = 1 transition a Faraday rotation reversal and a traveling wave gain dip are seen for small values of axial magnetic field. The nonlinearity induced anisotropy shows a marked dependence on the gas pressure in the amplifier tube for the J = 1 to J = 2 transition; this dependence agrees with the predictions of the general perturbational or weak signal theory when allowances are made for the effects of Zeeman sublevel-mixing collisions. The results provide a method for measuring the upper (neon 3s2) level quadrupole moment decay rate, the dipole moment decay rates for the 3s2 → 3p4 and 3s2 → 3p2 transitions, and the effects of various types of collision processes on these decay rates.
Resumo:
Since the discovery in 1962 of laser action in semiconductor diodes made from GaAs, the study of spontaneous and stimulated light emission from semiconductors has become an exciting new field of semiconductor physics and quantum electronics combined. Included in the limited number of direct-gap semiconductor materials suitable for laser action are the members of the lead salt family, i.e . PbS, PbSe and PbTe. The material used for the experiments described herein is PbTe . The semiconductor PbTe is a narrow band- gap material (Eg = 0.19 electron volt at a temperature of 4.2°K). Therefore, the radiative recombination of electron-hole pairs between the conduction and valence bands produces photons whose wavelength is in the infrared (λ ≈ 6.5 microns in air).
The p-n junction diode is a convenient device in which the spontaneous and stimulated emission of light can be achieved via current flow in the forward-bias direction. Consequently, the experimental devices consist of a group of PbTe p-n junction diodes made from p –type single crystal bulk material. The p - n junctions were formed by an n-type vapor- phase diffusion perpendicular to the (100) plane, with a junction depth of approximately 75 microns. Opposite ends of the diode structure were cleaved to give parallel reflectors, thereby forming the Fabry-Perot cavity needed for a laser oscillator. Since the emission of light originates from the recombination of injected current carriers, the nature of the radiation depends on the injection mechanism.
The total intensity of the light emitted from the PbTe diodes was observed over a current range of three to four orders of magnitude. At the low current levels, the light intensity data were correlated with data obtained on the electrical characteristics of the diodes. In the low current region (region A), the light intensity, current-voltage and capacitance-voltage data are consistent with the model for photon-assisted tunneling. As the current is increased, the light intensity data indicate the occurrence of a change in the current injection mechanism from photon-assisted tunneling (region A) to thermionic emission (region B). With the further increase of the injection level, the photon-field due to light emission in the diode builds up to the point where stimulated emission (oscillation) occurs. The threshold current at which oscillation begins marks the beginning of a region (region C) where the total light intensity increases very rapidly with the increase in current. This rapid increase in intensity is accompanied by an increase in the number of narrow-band oscillating modes. As the photon density in the cavity continues to increase with the injection level, the intensity gradually enters a region of linear dependence on current (region D), i.e. a region of constant (differential) quantum efficiency.
Data obtained from measurements of the stimulated-mode light-intensity profile and the far-field diffraction pattern (both in the direction perpendicular to the junction-plane) indicate that the active region of high gain (i.e. the region where a population inversion exists) extends to approximately a diffusion length on both sides of the junction. The data also indicate that the confinement of the oscillating modes within the diode cavity is due to a variation in the real part of the dielectric constant, caused by the gain in the medium. A value of τ ≈ 10-9 second for the minority- carrier recombination lifetime (at a diode temperature of 20.4°K) is obtained from the above measurements. This value for τ is consistent with other data obtained independently for PbTe crystals.
Data on the threshold current for stimulated emission (for a diode temperature of 20. 4°K) as a function of the reciprocal cavity length were obtained. These data yield a value of J’th = (400 ± 80) amp/cm2 for the threshold current in the limit of an infinitely long diode-cavity. A value of α = (30 ± 15) cm-1 is obtained for the total (bulk) cavity loss constant, in general agreement with independent measurements of free- carrier absorption in PbTe. In addition, the data provide a value of ns ≈ 10% for the internal spontaneous quantum efficiency. The above value for ns yields values of tb ≈ τ ≈ 10-9 second and ts ≈ 10-8 second for the nonradiative and the spontaneous (radiative) lifetimes, respectively.
The external quantum efficiency (nd) for stimulated emission from diode J-2 (at 20.4° K) was calculated by using the total light intensity vs. diode current data, plus accepted values for the material parameters of the mercury- doped germanium detector used for the measurements. The resulting value is nd ≈ 10%-20% for emission from both ends of the cavity. The corresponding radiative power output (at λ = 6.5 micron) is 120-240 milliwatts for a diode current of 6 amps.
Resumo:
An optical communication scheme of 2-D pattern transfer based on imaging optics for submarine laser uplink communication (SLUC) is suggested. Unlike the methods aiming at avoiding neighboring crosstalk used in traditional multi-channel optical beam transferring, we make full use of the overlapping of each spreading beam other than controlling divergence effect of each beam to avoid interference noise. The apparent parameters have been introduced to simplify theoretical analysis of optical pattern transfer problem involving underwater condition, with the help of which the complex beam propagation inside two kinds of mediums can be easily reduced to brief beam transfer only inside air medium. In this paper, optical transmission path and receiver terminal optics geometry have been described in detail. The link range equation and system uplink performance analysis have also been given. At last, results of a proof-of-concept experiment indicate good feasibility of the proposed SLUC model. © 2007 Elsevier GmbH. All rights reserved.
Resumo:
The effects of F- ions in Yb3+-doped tellurite glass systems on the emission cross-section and measured fluorescence lifetime are investigated. The results show that both the emission cross-section and the fluorescence lifetime of Yb3+ ions increase from 1.32 to 1.39 pm(2) and from 0.93 to 1.12 ms respectively with the increase of F- ions from 0 to 10 mol% and that such oxyfluoride tellurite glass system is a promising laser host matrix for high power generation. FT-IR spectra were used to analyze the effect of F- ions on the structure of tellurite glasses and the change of OH- groups in this glass system. Analysis demonstrates that the addition of fluoride decreases the symmetry of the structure of tellurite glasses resulting in increasing of the emission cross-section and removes the OH- groups resulting in increasing of the measured fluorescence lifetime of Yb3+ ions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effects of F- ions in a germanium-lead-tellurite glass system oil the spectral and potential laser properties of the Yb3+ are investigated. The absorption spectra, lifetimes, the emission cross-sections and the minimum pump intensities of the glass system with and without F- ions have been measured and calculated. The results show that the fluorescence lifetime and the minimum pump intensity of Yb3+ ions increase evidently, which indicates that germanium lead-oxyfluoride tellurite glass is a promising laser host matrix for high power generation. FT-IR spectra were used to analyse the effect of F- ions on OH- groups in this glass system. Analysis demonstrates that addition of fluoride removes the OH- groups and results in improvement of fluorescence lifetime of Yb3+.
Resumo:
this paper was retracted
Resumo:
Near-infrared to visible upconversion luminescence was observed in a multicomponent silicate (BK7) glass containing Ce3+ ions under focused infrared femtosecond laser irradiation. The emission spectra show that the upconversion luminescence comes from the 4f-5d transition of the Ce3+ ions. The relationship between the intensity of the Ce3+ emission and the pump power reveals that a three-photon absorption predominates in the conversion process from the near-infrared into the blue luminescence. The analysis of the upconversion mechanism suggests that the upconversion luminescence may come from a three-photon simultaneous absorption that leads to a population of the 5d level in which the characteristic luminescence occurs.
Resumo:
This is about the first reported laser glass with very low no, high Er3+ concentration and no quenching. In this work, a series of high Er3+ concentration (10.6-12.2 x 10(20) ions/cm(3)), low refractive index (n(1550) < 1.47) and relatively high fluorescence lifetime (6.8-12.6 ms) fluorophosphate glasses were made. A cw-pumping evanescent wave optical amplifier experiment was performed with it, and a relative gain of around 2dB at 1550 nm wavelength was achieved while the noise level was almost unchanged. To our knowledge, this is the first successful relative gain in evanescent wave optical amplifiers (EWOA) demonstrated with cw pumping. It is a valuable study of specially designed fluorophosphate glass suitable for EWOA communication experiment. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
研究了Na2O含量对Na2O-Al2O3-SiO2(NAS)玻璃的光谱性质的影响。利用Judd-Ofelt(J-O)理论和吸收光谱计算了Er^3+掺杂的铝硅酸盐玻璃的Ωt参数、自发辐射几率和自发辐射寿命,分析了Ωt参数与Na2O含量的关系以及与吸收截面,Er^3+离子^4I13 2能级的自发辐射几率和荧光半峰全宽(FWHM)等性质的关系。随Na2O含量的增加.J-O参数Ωt(t=2,4,6)减小,Er^3+离子1533nm的吸收截面和荧光半峰全宽.Er^3+离子^4I13 2能级的自发辐射几率也减小,而E
Resumo:
Lattice-matched (Delta(a/a) = 1.8-3.4%) (001) LiGaO2 substrates have been employed for the first time to grow ZnO thin films by pulsed-laser deposition at 350-650 degrees C with oxygen partial pressure of 20Pa. XRD shows that a highly c-axis-oriented ZnO film can be deposited on (001) LiGaO2 substrate at 500 degrees C. AFM images reveal the surfaces of as-deposited ZnO films are smooth and root-mean-square values are 6.662, 5.765 and 6.834 nm at 350, 500 and 650 degrees C, respectively. PL spectra indicate only near-band-edge UV emission appears in the curve of ZnO film deposited at 500 degrees C. The deep-level emission of ZnO film deposited at 650 degrees C probably results from Li diffusion into the film. All the results illustrate substrate temperature plays a pretty important role in obtaining ZnO film with a high quality on LiGaO2 substrate by pulsed-laser deposition. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Zinc oxide (ZnO) thin films were grown on the beta-Ga2O3 (100) substrate by pulsed laser deposition (PLD). X-ray diffraction (XRD) indicated that the ZnO films are c-axis oriented. The optical and electrical properties of the films were investigated. The room temperature Photoluminescence (PL) spectrum showed a near band emission at 3.28 eV with two deep level emissions. Optical absorption indicated a visible exciton absorption at room temperature. The as-grown films had good electrical properties with the resistivities as low as 0.02 Omega cm at room temperature. Thus, beta-Ga2O3 (100) substrate is shown to be a suitable substrate for fabricating ZnO film. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Gd2SiO5 (GSO) single crystal codoped with Yb3+ and Er3+ (Abbr. as Er:Yb:GSO) was successfully grown by the Czochralski (CZ) method for the first time and the spectral characteristics were investigated. The absorption and fluorescence spectra were measured. The emission lifetime of the I-4(13/2)-Er-level was measured to be 5.84ms and the emission cross-section at 1529nm was calculated to be 1.03 x 10(-20) cm(2). The results indicate that Er:Yb:GSO is a potential laser material at similar to 1. 55 mu m wavelength region. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effects of Na+ doping level on the thermal conductivities, absorption and emission spectra, and fluorescence lifetimes of Yb3+ ,Na+ :CaF2 crystals were systematically studied. Sites structure, covalent force, and crystal field strength of Yb3+ :CaF2 crystals were markedly varied by codoping Na+ as charge compensator. The 2.0at% Yb3+ and 3.0at% Na+-codoped CaF2 crystal was demonstrated to operate in diode-pumped passively mode-locking scheme. Transform-limited 1 ps laser pulses were obtained, showing the crystal capable of producing ultra-short laser pulses. (c) 2006 Elsevier B.V. All rights reserved.
Three-photon-excited upconversion luminescence of Ce3+: YAP crystal by femtosecond laser irradiation
Resumo:
Infrared to ultraviolet and visible upconversion luminescence was demonstrated in trivalent cerium doped YAlO3 crystal (Ce3+: YAP) under focused infrared femtosecond laser irradiation. The fluorescence spectra show that the upconverted luminescence comes from the 5d-4f transitions of trivalent cerium ions. The dependence of luminescence intensity of trivalent cerium on infrared pumping power reveals that the conversion of infrared radiation is dominated by three-photon excitation process. It is suggested that the simultaneous absorption of three infrared photons pumps the Ce3+ ion into upper 5d level, which quickly nonradiatively relax to lowest 5d level. Thereafter, the ions radiatively return to the ground states, leading to the characteristic emission of Ce3+. (c) 2005 Optical Society of America.