911 resultados para high dynamic range phototransistor
Resumo:
Objectives: Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous tumour type which necessitates multiple invitro models to attain an appreciation of its multiple subtypes. The phenomenon of epithelial-mesenchymal transition (EMT) isimportant to the development of a metastatic cancer cell phenotype being relevant to the ability of cancer cells to intravasate intovasculature and to invade tissues. The role of EMT in human papilloma virus (HPV) positive HNSCC is not well understood. Thispaper aims to characterize seven HNSCC cell lines (FaDu, SCC-25, SCC-15, CAL27, RPMI2650) including two new HPV-16positive HNSCC cell lines (UD-SCC2, 93-VU-147T) for their epithelial and mesenchymal properties. Materials and methods: A panel of HNSCC cell lines from multiple head and neck anatomical sites were profiled for basalexpression of epithelial and mesenchymal characteristics at mRNA, protein and functional levels (proliferative, migratory andinvasive properties). Furthermore, 3D spheroid forming capabilities were investigated. Results: We found that the HPV-16 positive cell line, in particular UD-SCC2 demonstrated a more invasive and mesenchymalphenotype at the molecular and functional levels suggesting HPV infection may mediate some of these cellular properties.Moreover, HPV-negative cell lines were not strictly epithelial presenting with a dynamic range of expression. Conclusions: This study presents the molecular and phenotypic diversity of HNSCC cell lines. It highlights the need formore studies in this field and a scoring system where HNSCC cell lines are ranked according to their respective epithelial andmesenchymal nature. This data will be useful to anyone modelling HNSCC behaviour, providing a molecular context which willenable them to decipher cell phenotypes and to develop therapies which block EMT progression.
Resumo:
This paper describes the implementation of the modified continuously variable slope delta modulator (MCVSD), in which the basic step size δ0 is made to vary as a function of input signal level. The information needed to carry out this is extracted at the local decoder output so that the coder and the decoder track each other. The result is a significant improvement in the dynamic range (about 15dB) as compared to CVSD coder without degrading the peak signal to noise ratio.
Resumo:
This paper presents a new algorithm for the step-size change of instantaneous adaptive delta modulator. The present strategy is such that the step-size at any sampling instant can increase or decrease by either of the two constant factors or can remain the same, depending upon the combination of three or four most recent output bits. The quantizer has been simulated on a digital computer, and its performance compared with other quantizers. The figure of merit used is the SNR with gaussian signals as the input. The results indicate that the new design can give an improved SNR over a wider dynamic range and fast response to step inputs, as compared to the earlier systems.
Resumo:
An improved encoding scheme is proposed wherein the quantizer step size incorporates both instantaneous and syllabic adaptation. The information needed to carry out this adaptation is extracted at the coder after the D/A conversion of the digital output, so that the coder and the decoder track each other. A 5-bit coder has been designed and built which has a dynamic range of 38 dB with a constant SNR of 30 dB, and the quality of its output signal is found to be comparable to that of other coding schemes
Resumo:
A primary motivation for this work arises from the contradictory results obtained in some recent measurements of the zero-crossing frequency of turbulent fluctuations in shear flows. A systematic study of the various factors involved in zero-crossing measurements shows that the dynamic range of the signal, the discriminator characteristics, filter frequency and noise contamination have a strong bearing on the results obtained. These effects are analysed, and explicit corrections for noise contamination have been worked out. New measurements of the zero-crossing frequency N0 have been made for the longitudinal velocity fluctuation in boundary layers and a wake, for wall shear stress in a channel, and for temperature derivatives in a heated boundary layer. All these measurements show that a zero-crossing microscale, defined as Λ = (2πN0)−1, is always nearly equal to the well-known Taylor microscale λ (in time). These measurements, as well as a brief analysis, show that even strong departures from Gaussianity do not necessarily yield values appreciably different from unity for the ratio Λ/λ. Further, the variation of N0/N0 max across the boundary layer is found to correlate with the familiar wall and outer coordinates; the outer scaling for N0 max is totally inappropriate, and the inner scaling shows only a weak Reynolds-number dependence. It is also found that the distribution of the interval between successive zero-crossings can be approximated by a combination of a lognormal and an exponential, or (if the shortest intervals are ignored) even of two exponentials, one of which characterizes crossings whose duration is of the order of the wall-variable timescale ν/U2*, while the other characterizes crossings whose duration is of the order of the large-eddy timescale δ/U[infty infinity]. The significance of these results is discussed, and it is particularly argued that the pulse frequency of Rao, Narasimha & Badri Narayanan (1971) is appreciably less than the zero-crossing rate.
Resumo:
Over the last few decades, geotextiles have progressively been incorporated into geotechnical applications, especially in the field of coastal engineering. Geotextile materials often act as separator and a filter layer between rocks laid above and subgrade beneath. This versatile material has gradually substituted traditional granular materials because of its ease of installation, consistent quality and labour costefficiency. However, geotextiles often suffer damage during installation due to high dynamic bulk loading of rock placement. This can degrade geotextiles' mechanical strength. The properties considered in this paper include the impact resistance and retained strength of geotextiles. In general, the greater the impact energy applied to geotextiles, the greater the potential for damage. Results highlight the inadequacy of using index derived values as an indicator to determine geotextile performance on site because test results shows that geotextiles (staple fibre (SF) and continuous filament (CF)) with better mechanical properties did not outperform lower mechanical strength materials. The toughest CF product with a CBR index value of 9696N shows inferior impact resistance compared to SF product with the least CBR strength (2719N) given the same impact energy of 9.02 kJ. Test results also indicated that the reduction of strength for CF materials were much greater (between 20 and 50%) compared to SF materials (between 0 and 5%) when subjected to the same impact energy of 4.52 kJ.
Resumo:
A torsional MEMS varactor with wide dynamic range, lower actuation voltage and isolation between actuation voltage and signal voltage has been proposed in C. Venkatesh et al. (2005). In this paper we address the effects of pull-in, residual stress and continuous cycling on the performance of torsional MEMS varactor.
Resumo:
PMSM drive with high dynamic response is the attractive solution for servo applications like robotics, machine tools, electric vehicles. Vector control is widely accepted control strategy for PMSM control, which enables decoupled control of torque and flux, this improving the transient response of torque and speed. As the vector control demands exhaustive real time computations, so the present work is implemented using TI DSP 320C240. Presently position and speed controller have been successfully tested. The feedback information used is shaft (rotor) position from the incremental encoder and two motor currents. We conclude with the hope to extend the present experimental set up for further research related to PMSM applications.
Resumo:
The efficiency of acoustooptic (AO) interaction in YZ-cut proton exchanged (PE) LiNbO3 waveguides is theoretically analysed by determining the overlap between the optical and acoustic field distributions. The present analysis takes into account the perturbed SAW field distribution due to the presence of the PE layer on the LiNbO3 substrate determined by the rigorous layered medium approach. The overlap is found to be significant upto very high acoustic frequencies of the order of 5 GHz, whereas in the earlier analysis by vonHelmolt and Schaffer [6] for diffused waveguides, it was shown that the overlap integral rolls down to nearly zero at this high frequency range.
Resumo:
A novel approach for simultaneous measurement of chirp (any parameter that can induce strain gradient on FBG) and temperature using a single FBG is proposed. Change in reflectivity at central wavelength of FBG reflection & Bragg wavelength shifts induced due to temperature were used for chirp & temperature measurements respectively. Theoretical resolution limit for chirp and temperature using an Optical Spectrum Analyzer (OSA) with 1pm wavelength resolution and >58dB dynamic range are 12.8fm and 1/13 degrees C respectively.
Resumo:
A simple method to generate time domain tailored waveforms for excitation of ion axial amplitude in Paul trap mass spectrometers is described. The method is based on vector summation of sine waves followed by time domain sampling to obtain the discrete time domain data. A smoothing technique based on the time domain Kaiser window is then applied to the data so as to minimize the frequency domain Gibb's oscillations. The dynamic range of the time domain signal is controlled by phase modulation and time extension of the time domain waveform. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Electrochemical redox reactions of ferrous/ferric (Fe2+/Fe3+) and hydroquinone/quinone (H(2)Q/Q) were studied on Pt and polyaniline (PANI)-deposited Pt electrodes in 0.5 M H2SO4-supporting electrolyte by cyclic voltammetry and ac impedance spectroscopy. A comparison of the experimental data obtained with the Pt and PANI/Pt electrodes suggested that the reactions were catalyzed by the PANI. Based on a relative increase in peak currents of cyclic voltammograms, catalytic efficiency (gamma(cv)) of the PANI was defined. There was an increase in gamma(cv) with an increase of scan rate and a decrease of concentration of Fe2+/Fe3+ or H(2)Q. The complex plane impedance spectrum of the electrode consisted of a semicircle in high frequency range and a linear spike in low frequency range. The exchange current density (i(0)) calculated using the semicircle part of the impedance showed Butler-Volmer kinetics with respect to concentration dependence. From a relative increase of i(0) on the PANI/Pt electrode, catalytic efficiency (gamma(eis)) was evaluated. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Trajectory optimization of a generic launch vehicle is considered in this paper. The trajectory from launch point to terminal injection point is divided in to two segments. The first segment deals with launcher clearance and vertical raise of the vehicle. During this phase, a nonlinear feedback guidance loop is incorporated to assure vertical raise in presence of thrust misalignment, centre of gravity offset, wind disturbance etc. and possibly to clear obstacles as well. The second segment deals with the trajectory optimization, where the objective is to ensure desired terminal conditions as well as minimum control effort and minimum structural loading in the high dynamic pressure region. The usefulness of this dynamic optimization problem formulation is demonstrated by solving it using the classical Gradient method. Numerical results for both the segments are presented, which clearly brings out the potential advantages of the proposed approach.
Resumo:
A novel comparator architecture is proposed for speed operation in low voltage environment. Performance comparison with a conventional regenerative comparator shows a speed-up of 41%. The proposed comparator is embedded in a continuous time sigma-delta ADC so as to reduce the quantizer delay and hence minimizes the excess loop delay problem. A performance enhancement of 1dB in the dynamic range of the ADC is achieved with this new comparator. We have implemented this ADC in a standard single-poly 8-Metal 0.13 mum UMC process. The entire system operates at 1.2 V supply providing a dynamic range of 32 dB consuming 720 muW of power and occupies an area of 0.1 mm2.
Resumo:
Chronic recording of neural signals is indispensable in designing efficient brain–machine interfaces and to elucidate human neurophysiology. The advent of multichannel micro-electrode arrays has driven the need for electronics to record neural signals from many neurons. The dynamic range of the system can vary over time due to change in electrode–neuron distance and background noise. We propose a neural amplifier in UMC 130 nm, 1P8M complementary metal–oxide–semiconductor (CMOS) technology. It can be biased adaptively from 200 nA to 2 $mu{rm A}$, modulating input referred noise from 9.92 $mu{rm V}$ to 3.9 $mu{rm V}$. We also describe a low noise design technique which minimizes the noise contribution of the load circuitry. Optimum sizing of the input transistors minimizes the accentuation of the input referred noise of the amplifier and obviates the need of large input capacitance. The amplifier achieves a noise efficiency factor of 2.58. The amplifier can pass signal from 5 Hz to 7 kHz and the bandwidth of the amplifier can be tuned for rejecting low field potentials (LFP) and power line interference. The amplifier achieves a mid-band voltage gain of 37 dB. In vitro experiments are performed to validate the applicability of the neural low noise amplifier in neural recording systems.