834 resultados para e-learning quality


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning Objects facilitate reuse leading to cost and time savings as well as to the enhancement of the quality of educational resources. However, teachers find it difficult to create or to find high quality Learning Objects, and the ones they find need to be customized. Teachers can overcome this problem using suitable authoring systems that enable them to create high quality Learning Objects with little effort. This paper presents an open source online e-Learning authoring tool called ViSH Editor together with four novel interactive Learning Objects that can be created with it: Flashcards, Virtual Tours, Enriched Videos and Interactive Presentations. All these Learning Objects are created as web applications, which can be accessed via mobile devices. Besides, they can be exported to SCORM including their metadata in IEEE LOM format. All of them are described in the paper including an example of each. This approach for creating Learning Objects was validated through two evaluations: a survey among authors and a formal quality evaluation of 209 Learning Objects created with the tool. The results show that ViSH Editor facilitates educators the creation of high quality Learning Objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systematic evaluation of Learning Objects is essential to make high quality Web-based education possible. For this reason, several educational repositories and e-Learning systems have developed their own evaluation models and tools. However, the differences of the context in which Learning Objects are produced and consumed suggest that no single evaluation model is sufficient for all scenarios. Besides, no much effort has been put in developing open tools to facilitate Learning Object evaluation and use the quality information for the benefit of end users. This paper presents LOEP, an open source web platform that aims to facilitate Learning Object evaluation in different scenarios and educational settings by supporting and integrating several evaluation models and quality metrics. The work exposed in this paper shows that LOEP is capable of providing Learning Object evaluation to e-Learning systems in an open, low cost, reliable and effective way. Possible scenarios where LOEP could be used to implement quality control policies and to enhance search engines are also described. Finally, we report the results of a survey conducted among reviewers that used LOEP, showing that they perceived LOEP as a powerful and easy to use tool for evaluating Learning Objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El aprendizaje automático y la cienciometría son las disciplinas científicas que se tratan en esta tesis. El aprendizaje automático trata sobre la construcción y el estudio de algoritmos que puedan aprender a partir de datos, mientras que la cienciometría se ocupa principalmente del análisis de la ciencia desde una perspectiva cuantitativa. Hoy en día, los avances en el aprendizaje automático proporcionan las herramientas matemáticas y estadísticas para trabajar correctamente con la gran cantidad de datos cienciométricos almacenados en bases de datos bibliográficas. En este contexto, el uso de nuevos métodos de aprendizaje automático en aplicaciones de cienciometría es el foco de atención de esta tesis doctoral. Esta tesis propone nuevas contribuciones en el aprendizaje automático que podrían arrojar luz sobre el área de la cienciometría. Estas contribuciones están divididas en tres partes: Varios modelos supervisados (in)sensibles al coste son aprendidos para predecir el éxito científico de los artículos y los investigadores. Los modelos sensibles al coste no están interesados en maximizar la precisión de clasificación, sino en la minimización del coste total esperado derivado de los errores ocasionados. En este contexto, los editores de revistas científicas podrían disponer de una herramienta capaz de predecir el número de citas de un artículo en el fututo antes de ser publicado, mientras que los comités de promoción podrían predecir el incremento anual del índice h de los investigadores en los primeros años. Estos modelos predictivos podrían allanar el camino hacia nuevos sistemas de evaluación. Varios modelos gráficos probabilísticos son aprendidos para explotar y descubrir nuevas relaciones entre el gran número de índices bibliométricos existentes. En este contexto, la comunidad científica podría medir cómo algunos índices influyen en otros en términos probabilísticos y realizar propagación de la evidencia e inferencia abductiva para responder a preguntas bibliométricas. Además, la comunidad científica podría descubrir qué índices bibliométricos tienen mayor poder predictivo. Este es un problema de regresión multi-respuesta en el que el papel de cada variable, predictiva o respuesta, es desconocido de antemano. Los índices resultantes podrían ser muy útiles para la predicción, es decir, cuando se conocen sus valores, el conocimiento de cualquier valor no proporciona información sobre la predicción de otros índices bibliométricos. Un estudio bibliométrico sobre la investigación española en informática ha sido realizado bajo la cultura de publicar o morir. Este estudio se basa en una metodología de análisis de clusters que caracteriza la actividad en la investigación en términos de productividad, visibilidad, calidad, prestigio y colaboración internacional. Este estudio también analiza los efectos de la colaboración en la productividad y la visibilidad bajo diferentes circunstancias. ABSTRACT Machine learning and scientometrics are the scientific disciplines which are covered in this dissertation. Machine learning deals with the construction and study of algorithms that can learn from data, whereas scientometrics is mainly concerned with the analysis of science from a quantitative perspective. Nowadays, advances in machine learning provide the mathematical and statistical tools for properly working with the vast amount of scientometrics data stored in bibliographic databases. In this context, the use of novel machine learning methods in scientometrics applications is the focus of attention of this dissertation. This dissertation proposes new machine learning contributions which would shed light on the scientometrics area. These contributions are divided in three parts: Several supervised cost-(in)sensitive models are learned to predict the scientific success of articles and researchers. Cost-sensitive models are not interested in maximizing classification accuracy, but in minimizing the expected total cost of the error derived from mistakes in the classification process. In this context, publishers of scientific journals could have a tool capable of predicting the citation count of an article in the future before it is published, whereas promotion committees could predict the annual increase of the h-index of researchers within the first few years. These predictive models would pave the way for new assessment systems. Several probabilistic graphical models are learned to exploit and discover new relationships among the vast number of existing bibliometric indices. In this context, scientific community could measure how some indices influence others in probabilistic terms and perform evidence propagation and abduction inference for answering bibliometric questions. Also, scientific community could uncover which bibliometric indices have a higher predictive power. This is a multi-output regression problem where the role of each variable, predictive or response, is unknown beforehand. The resulting indices could be very useful for prediction purposes, that is, when their index values are known, knowledge of any index value provides no information on the prediction of other bibliometric indices. A scientometric study of the Spanish computer science research is performed under the publish-or-perish culture. This study is based on a cluster analysis methodology which characterizes the research activity in terms of productivity, visibility, quality, prestige and international collaboration. This study also analyzes the effects of collaboration on productivity and visibility under different circumstances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Las centrales nucleares necesitan de personal altamente especializado y formado. Es por ello por lo que el sector de la formación especializada en centrales nucleares necesita incorporar los últimos avances en métodos formativos. Existe una gran cantidad de cursos de formación presenciales y es necesario transformar dichos cursos para utilizarlos con las nuevas tecnologías de la información. Para ello se necesitan equipos multidisciplinares, en los que se incluyen ingenieros, que deben identificar los objetivos formativos, competencias, contenidos y el control de calidad del propio curso. En este proyecto se utilizan técnicas de ingeniería del conocimiento como eje metodológico para transformar un curso de formación presencial en formación on-line a través de tecnologías de la información. En la actualidad, las nuevas tecnologías de la información y comunicación están en constante evolución. De esta forma se han sumergido en el mundo transformando la visión que teníamos de éste para dar lugar a nuevas oportunidades. Es por ello que este proyecto busca la unión entre el e-learning y el mundo empresarial. El objetivo es el diseño, en plataforma e-learning, de un curso técnico que instruya a operadores de sala de control de una central nuclear. El trabajo realizado en este proyecto ha sido, además de transformar un curso presencial en on-line, en obtener una metodología para que otros cursos se puedan transformar. Para conseguir este cometido, debemos preocuparnos tanto por el contenido de los cursos como por su gestión. Por este motivo, el proyecto comienza con definiciones básicas de terminología propia de e-learning. Continúa con la generación de una metodología que aplique la gestión de conocimiento para transformar cualquier curso presencial a esta plataforma. Definida la metodología, se aplicará para el diseño del curso específico de Coeficientes Inherentes de Reactividad. Finaliza con un estudio económico que dé viabilidad al proyecto y con la creación de un modelo económico que estime el precio para cualquier curso futuro. Abstract Nuclear power plants need highly specialized and trained personnel. Thus, nuclear power plant Specialized Training Sector requires the incorporation of the latest advances in training methods. A large array of face-to-face training courses exist and it has become necessary to transform said courses in order to apply them with the new information systems available. For this, multidisciplinary equipment is needed where the engineering workforce must identify educational objectives, competences and abilities, contents and quality control of the different courses. In this project, knowledge engineering techniques are employed as the methodological axis in order to transform a face-to-face training course into on-line training through the use of new information technologies. Nowadays, new information and communication technologies are in constant evolution. They have introduced themselves into our world, transforming our previous vision of them, leading to new opportunities. For this reason, the present Project seeks to unite the use of e-learning and the Business and Corporate world. The main objective is the design, in an e-learning platform, of a technical course that will train nuclear power plant control-room operators. The work carried out in this Project has been, in addition to the transformation of a face-to-face course into an online one, the obtainment of a methodology to employ in the future transformation of other courses. In order to achieve this mission, our interest must focus on the content as well as on the management of the various courses. Hence, the Project starts with basic definitions of e-learning terminology. Next, a methodology that applies knowledge management for the transformation of any face-to-face course into e-learning has been generated. Once this methodology is defined, it has been applied for the design process of the Inherent Coefficients of Reactivity course. Finally, an economic study has been developed in order to determine the viability of the Project and an economic model has been created to estimate the price of any given course

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bridge building is a highly uncertain endeavour that entails considerable risk, as attested to by the succession of construction-related incidents and accidents recently reported in Spain and elsewhere. While efforts are being made to improve on-site safety, many issues are still outstanding, such as the establishment of reliability requirements for the ancillary systems used. The problems that must be dealt with in everyday practice, however, are more elementary and often attributable to human error. The overall organisation of the use of bridge construction equipment is in need of improvement. Close cooperation between the bridge engineers responsible for construction planning and ancillary element suppliers is imperative, for flawed interaction between building equipment and the bridge under construction may generate structural vulnerability. External quality assurance should likewise be mandatory

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El auge y penetración de las nuevas tecnologías junto con la llamada Web Social están cambiando la forma en la que accedemos a la medicina. Cada vez más pacientes y profesionales de la medicina están creando y consumiendo recursos digitales de contenido clínico a través de Internet, surgiendo el problema de cómo asegurar la fiabilidad de estos recursos. Además, un nuevo concepto está apareciendo, el de pervasive healthcare o sanidad ubicua, motivado por pacientes que demandan un acceso a los servicios sanitarios en todo momento y en todo lugar. Este nuevo escenario lleva aparejado un problema de confianza en los proveedores de servicios sanitarios. Las plataformas de eLearning se están erigiendo como paradigma de esta nueva Medicina 2.0 ya que proveen un servicio abierto a la vez que controlado/supervisado a recursos digitales, y facilitan las interacciones y consultas entre usuarios, suponiendo una buena aproximación para esta sanidad ubicua. En estos entornos los problemas de fiabilidad y confianza pueden ser solventados mediante la implementación de mecanismos de recomendación de recursos y personas de manera confiable. Tradicionalmente las plataformas de eLearning ya cuentan con mecanismos de recomendación, si bien están más enfocados a la recomendación de recursos. Para la recomendación de usuarios es necesario acudir a mecanismos más elaborados como son los sistemas de confianza y reputación (trust and reputation) En ambos casos, tanto la recomendación de recursos como el cálculo de la reputación de los usuarios se realiza teniendo en cuenta criterios principalmente subjetivos como son las opiniones de los usuarios. En esta tesis doctoral proponemos un nuevo modelo de confianza y reputación que combina evaluaciones automáticas de los recursos digitales en una plataforma de eLearning, con las opiniones vertidas por los usuarios como resultado de las interacciones con otros usuarios o después de consumir un recurso. El enfoque seguido presenta la novedad de la combinación de una parte objetiva con otra subjetiva, persiguiendo mitigar el efecto de posibles castigos subjetivos por parte de usuarios malintencionados, a la vez que enriquecer las evaluaciones objetivas con información adicional acerca de la capacidad pedagógica del recurso o de la persona. El resultado son recomendaciones siempre adaptadas a los requisitos de los usuarios, y de la máxima calidad tanto técnica como educativa. Esta nueva aproximación requiere una nueva herramienta para su validación in-silico, al no existir ninguna aplicación que permita la simulación de plataformas de eLearning con mecanismos de recomendación de recursos y personas, donde además los recursos sean evaluados objetivamente. Este trabajo de investigación propone pues una nueva herramienta, basada en el paradigma de programación orientada a agentes inteligentes para el modelado de comportamientos complejos de usuarios en plataformas de eLearning. Además, la herramienta permite también la simulación del funcionamiento de este tipo de entornos dedicados al intercambio de conocimiento. La evaluación del trabajo propuesto en este documento de tesis se ha realizado de manera iterativa a lo largo de diferentes escenarios en los que se ha situado al sistema frente a una amplia gama de comportamientos de usuarios. Se ha comparado el rendimiento del modelo de confianza y reputación propuesto frente a dos modos de recomendación tradicionales: a) utilizando sólo las opiniones subjetivas de los usuarios para el cálculo de la reputación y por extensión la recomendación; y b) teniendo en cuenta sólo la calidad objetiva del recurso sin hacer ningún cálculo de reputación. Los resultados obtenidos nos permiten afirmar que el modelo desarrollado mejora la recomendación ofrecida por las aproximaciones tradicionales, mostrando una mayor flexibilidad y capacidad de adaptación a diferentes situaciones. Además, el modelo propuesto es capaz de asegurar la recomendación de nuevos usuarios entrando al sistema frente a la nula recomendación para estos usuarios presentada por el modo de recomendación predominante en otras plataformas que basan la recomendación sólo en las opiniones de otros usuarios. Por último, el paradigma de agentes inteligentes ha probado su valía a la hora de modelar plataformas virtuales complejas orientadas al intercambio de conocimiento, especialmente a la hora de modelar y simular el comportamiento de los usuarios de estos entornos. La herramienta de simulación desarrollada ha permitido la evaluación del modelo de confianza y reputación propuesto en esta tesis en una amplia gama de situaciones diferentes. ABSTRACT Internet is changing everything, and this revolution is especially present in traditionally offline spaces such as medicine. In recent years health consumers and health service providers are actively creating and consuming Web contents stimulated by the emergence of the Social Web. Reliability stands out as the main concern when accessing the overwhelming amount of information available online. Along with this new way of accessing the medicine, new concepts like ubiquitous or pervasive healthcare are appearing. Trustworthiness assessment is gaining relevance: open health provisioning systems require mechanisms that help evaluating individuals’ reputation in pursuit of introducing safety to these open and dynamic environments. Technical Enhanced Learning (TEL) -commonly known as eLearning- platforms arise as a paradigm of this Medicine 2.0. They provide an open while controlled/supervised access to resources generated and shared by users, enhancing what it is being called informal learning. TEL systems also facilitate direct interactions amongst users for consultation, resulting in a good approach to ubiquitous healthcare. The aforementioned reliability and trustworthiness problems can be faced by the implementation of mechanisms for the trusted recommendation of both resources and healthcare services providers. Traditionally, eLearning platforms already integrate recommendation mechanisms, although this recommendations are basically focused on providing an ordered classifications of resources. For users’ recommendation, the implementation of trust and reputation systems appears as the best solution. Nevertheless, both approaches base the recommendation on the information from the subjective opinions of other users of the platform regarding the resources or the users. In this PhD work a novel approach is presented for the recommendation of both resources and users within open environments focused on knowledge exchange, as it is the case of TEL systems for ubiquitous healthcare. The proposed solution adds the objective evaluation of the resources to the traditional subjective personal opinions to estimate the reputation of the resources and of the users of the system. This combined measure, along with the reliability of that calculation, is used to provide trusted recommendations. The integration of opinions and evaluations, subjective and objective, allows the model to defend itself against misbehaviours. Furthermore, it also allows ‘colouring’ cold evaluation values by providing additional quality information such as the educational capacities of a digital resource in an eLearning system. As a result, the recommendations are always adapted to user requirements, and of the maximum technical and educational quality. To our knowledge, the combination of objective assessments and subjective opinions to provide recommendation has not been considered before in the literature. Therefore, for the evaluation of the trust and reputation model defined in this PhD thesis, a new simulation tool will be developed following the agent-oriented programming paradigm. The multi-agent approach allows an easy modelling of independent and proactive behaviours for the simulation of users of the system, conforming a faithful resemblance of real users of TEL platforms. For the evaluation of the proposed work, an iterative approach have been followed, testing the performance of the trust and reputation model while providing recommendation in a varied range of scenarios. A comparison with two traditional recommendation mechanisms was performed: a) using only users’ past opinions about a resource and/or other users; and b) not using any reputation assessment and providing the recommendation considering directly the objective quality of the resources. The results show that the developed model improves traditional approaches at providing recommendations in Technology Enhanced Learning (TEL) platforms, presenting a higher adaptability to different situations, whereas traditional approaches only have good results under favourable conditions. Furthermore the promotion period mechanism implemented successfully helps new users in the system to be recommended for direct interactions as well as the resources created by them. On the contrary OnlyOpinions fails completely and new users are never recommended, while traditional approaches only work partially. Finally, the agent-oriented programming (AOP) paradigm has proven its validity at modelling users’ behaviours in TEL platforms. Intelligent software agents’ characteristics matched the main requirements of the simulation tool. The proactivity, sociability and adaptability of the developed agents allowed reproducing real users’ actions and attitudes through the diverse situations defined in the evaluation framework. The result were independent users, accessing to different resources and communicating amongst them to fulfil their needs, basing these interactions on the recommendations provided by the reputation engine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Online education is a new teaching and learning medium with few current guidelines for faculty, administrators or students. Its rapid growth over the last decade has challenged academic institutions to keep up with the demand, while also providing a quality education. Our understanding of the factors that determine quality and effective online learning experiences that lead to student learning outcomes is still evolving. There is a lack of consensus on the effectiveness of online versus face-to-face education in the current research. The U.S. Department of Education conducted a meta-analysis in 2009 and concluded that student-learning outcomes in online courses were equal to and, often times, better than face-to-face traditional courses. Subsequent research has found contradictory findings, and further inquiry is necessary. The purpose of this embedded mixed methods design research study is to further our understanding of the factors that create quality and successful educational outcomes in an online course. To achieve this, the first phase of this study measured and compared learning outcomes in an online and in class graduate-level legal administration course. The second phase of the study entailed interviews with those students in both the online and face-to-face sections to understand their perspectives on the factors contributing to learning outcomes. Six themes emerged from the qualitative findings: convenience, higher order thinking, discussions, professor engagement, professor and student interaction, and face-to-face interaction. Findings from this study indicate the factors students perceive as contributing to learning outcomes in an online course are consistent among all students and are supported in the existing literature. Higher order thinking, however, emerged as a stronger theme than indicated in the current research, and the face-to-face nature of the traditional classroom may be more an issue of familiarity than a factor contributing to learning outcomes. As education continues to reach new heights and developments in technology advance, the factors found to contribute to student learning outcomes will be refined and enhanced. These developments will continue to transform the ways in which we deliver and receive knowledge in both traditional and online classrooms. While there is a growing body of research on online education, the field’s evolution has unsettled earlier findings and posed new areas to investigate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Online education is no longer a trend, rather it is mainstream. In the Fall of 2012, 69.1% of chief academic leaders indicated online learning was critical to their long-term strategy and of the 20.6 million students enrolled in higher education, 6.7 million were enrolled in an online course (Allen & Seaman, 2013; United States Department of Education, 2013). The advent of online education and its rapid growth has forced academic institutions and faculty to question the current styles and techniques for teaching and learning. As developments in educational technology continue to advance, the ways in which we deliver and receive knowledge in both the traditional and online classrooms will further evolve. It is necessary to investigate and understand the progression and advancements in educational technology and the variety of methods used to deliver knowledge to improve the quality of education we provide today and motivate, inspire, and educate the students of the 21st century. This paper explores the atioevolution of distance education beginning with correspondence and the use of parcel post, to radio, then to television, and finally to online education.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exponential growth of the subjective information in the framework of the Web 2.0 has led to the need to create Natural Language Processing tools able to analyse and process such data for multiple practical applications. They require training on specifically annotated corpora, whose level of detail must be fine enough to capture the phenomena involved. This paper presents EmotiBlog – a fine-grained annotation scheme for subjectivity. We show the manner in which it is built and demonstrate the benefits it brings to the systems using it for training, through the experiments we carried out on opinion mining and emotion detection. We employ corpora of different textual genres –a set of annotated reported speech extracted from news articles, the set of news titles annotated with polarity and emotion from the SemEval 2007 (Task 14) and ISEAR, a corpus of real-life self-expressed emotion. We also show how the model built from the EmotiBlog annotations can be enhanced with external resources. The results demonstrate that EmotiBlog, through its structure and annotation paradigm, offers high quality training data for systems dealing both with opinion mining, as well as emotion detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes the adaptation and validation of the Distance Education Learning Environments Survey (DELES) for use in investigating the qualities found in distance and hybrid education psycho-social learning environments in Spain. As Europe moves toward post-secondary student mobility, equanimity in access to higher education, and more standardised degree programs across the European Higher Education Area (EHEA) the need for a high quality method for continually assessing the excellence of distance and hybrid learning environments has arisen. This study outlines how the English language DELES was adapted into the new Spanish-Distance Education Learning Environments Survey (S-DELES) for use with a Bachelor of Psychology and Criminology degree program offering both distance and hybrid education classes. We present the relationships between psycho-social learning environment perceptions and those of student affect. We also present the asynchronous aspects of the environment, scale means, and a comparison between the perceptions of distance education students and their hybrid education counterparts that inform the university about the baseline health of the information and communication technologies (ICT) environment within which the study was conducted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The Clinical Learning Environment, Supervision and Nurse Teacher scale is a reliable and valid instrument to evaluate the quality of the clinical learning process in international nursing education contexts. Objectives: This paper reports the development and psychometric testing of the Spanish version of the Clinical Learning Environment, Supervision and Nurse Teacher scale. Design: Cross-sectional validation study of the scale. Setting: 10 public and private hospitals in the Alicante area, and the Faculty of Health Sciences (University of Alicante, Spain). Participants: 370 student nurses on clinical placement (January 2011–March 2012). Methods: The Clinical Learning Environment, Supervision and Nurse Teacher scale was translated using the modified direct translation method. Statistical analyses were performed using PASW Statistics 18 and AMOS 18.0.0 software. A multivariate analysis was conducted in order to assess construct validity. Cronbach’s alpha coefficient was used to evaluate instrument reliability. Results: An exploratory factorial analysis identified the five dimensions from the original version, and explained 66.4% of the variance. Confirmatory factor analysis supported the factor structure of the Spanish version of the instrument. Cronbach’s alpha coefficient for the scale was .95, ranging from .80 to .97 for the subscales. Conclusion: This version of the Clinical Learning Environment, Supervision and Nurse Teacher scale instrument showed acceptable psychometric properties for use as an assessment scale in Spanish-speaking countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Designing educational resources allow students to modify their learning process. In particular, on-line and downloadable educational resources have been successfully used in engineering education the last years [1]. Usually, these resources are free and accessible from web. In addition, they are designed and developed by lecturers and used by their students. But, they are rarely developed by students in order to be used by other students. In this work-in-progress, lecturers and students are working together to implement educational resources, which can be used by students to improve the learning process of computer networks subject in engineering studies. In particular, network topologies to model LAN (Local Area Network) and MAN (Metropolitan Area Network) are virtualized in order to simulate the behavior of the links and nodes when they are interconnected with different physical and logical design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluates the technical efficiency of the learning-teaching process in higher education using a three-stage procedure that offers advances in comparison to previous studies and improves the quality of the results. First, it utilizes a multiple stage Data Envelopment Analysis (DEA) with contextual variables. Second, the levels of super efficiency are calculated in order to prioritize the efficiency units. And finally, through sensitivity analysis, the contribution of each key performance indicator (KPI) is established with respect to the efficiency levels without omission of variables. The analytical data was collected from a survey completed by 633 tourism students during the 2011/12, 2012/13 and 2013/14 academic course years. The results suggest that level of satisfaction with the course, diversity of materials and satisfaction with the teacher were the most important factors affecting teaching performance. Furthermore, the effect of the contextual variables was found to be significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation includes two studies. Study 1 is a qualitative case study that describes enactment of the main components of a high fidelity Full-Day Early Learning Kindergarten (FDELK) classroom, specifically play-based learning and teacher-ECE collaboration. Study 2 is a quantitative analysis that investigates how effectively the FDELK program promotes school readiness skills, namely self-regulation, literacy, and numeracy, in Kindergarteners. To describe the main components of an FDELK classroom in Study 1, a sub-sample of four high fidelity case study schools were selected from a larger case study sample. Interview data from these schools’ administrators, educators, parents, and community stakeholders were used to describe how the main components of the FDELK program enabled educators to meet the individual needs of students and promote students’ SR development. In Study 2, hierarchical regression analyses of 32,207 students’ self-regulation, literacy, and numeracy outcomes using 2012 Ontario Early Development Instrument (EDI) data revealed essentially no benefit for students participating in the FDELK program when compared to peers in Half-Day or Alternate-Day Kindergarten programs. Being older and female predicted more positive SR and literacy outcomes. Age and gender accounted for limited variance in numeracy outcomes. Results from both studies suggest that the Ontario Ministry of Education should take steps to improve the quality of the FDELK program by incorporating evidence-based guidelines and goals for play, reducing Kindergarten class sizes to more effectively scaffold learning, and revising curriculum expectations to include a greater focus on SR, literacy, and numeracy skills.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La recherche d'informations s'intéresse, entre autres, à répondre à des questions comme: est-ce qu'un document est pertinent à une requête ? Est-ce que deux requêtes ou deux documents sont similaires ? Comment la similarité entre deux requêtes ou documents peut être utilisée pour améliorer l'estimation de la pertinence ? Pour donner réponse à ces questions, il est nécessaire d'associer chaque document et requête à des représentations interprétables par ordinateur. Une fois ces représentations estimées, la similarité peut correspondre, par exemple, à une distance ou une divergence qui opère dans l'espace de représentation. On admet généralement que la qualité d'une représentation a un impact direct sur l'erreur d'estimation par rapport à la vraie pertinence, jugée par un humain. Estimer de bonnes représentations des documents et des requêtes a longtemps été un problème central de la recherche d'informations. Le but de cette thèse est de proposer des nouvelles méthodes pour estimer les représentations des documents et des requêtes, la relation de pertinence entre eux et ainsi modestement avancer l'état de l'art du domaine. Nous présentons quatre articles publiés dans des conférences internationales et un article publié dans un forum d'évaluation. Les deux premiers articles concernent des méthodes qui créent l'espace de représentation selon une connaissance à priori sur les caractéristiques qui sont importantes pour la tâche à accomplir. Ceux-ci nous amènent à présenter un nouveau modèle de recherche d'informations qui diffère des modèles existants sur le plan théorique et de l'efficacité expérimentale. Les deux derniers articles marquent un changement fondamental dans l'approche de construction des représentations. Ils bénéficient notamment de l'intérêt de recherche dont les techniques d'apprentissage profond par réseaux de neurones, ou deep learning, ont fait récemment l'objet. Ces modèles d'apprentissage élicitent automatiquement les caractéristiques importantes pour la tâche demandée à partir d'une quantité importante de données. Nous nous intéressons à la modélisation des relations sémantiques entre documents et requêtes ainsi qu'entre deux ou plusieurs requêtes. Ces derniers articles marquent les premières applications de l'apprentissage de représentations par réseaux de neurones à la recherche d'informations. Les modèles proposés ont aussi produit une performance améliorée sur des collections de test standard. Nos travaux nous mènent à la conclusion générale suivante: la performance en recherche d'informations pourrait drastiquement être améliorée en se basant sur les approches d'apprentissage de représentations.