930 resultados para abstract optimization problems
Resumo:
The topology optimization problem characterize and determine the optimum distribution of material into the domain. In other words, after the definition of the boundary conditions in a pre-established domain, the problem is how to distribute the material to solve the minimization problem. The objective of this work is to propose a competitive formulation for optimum structural topologies determination in 3D problems and able to provide high-resolution layouts. The procedure combines the Galerkin Finite Elements Method with the optimization method, looking for the best material distribution along the fixed domain of project. The layout topology optimization method is based on the material approach, proposed by Bendsoe & Kikuchi (1988), and considers a homogenized constitutive equation that depends only on the relative density of the material. The finite element used for the approach is a four nodes tetrahedron with a selective integration scheme, which interpolate not only the components of the displacement field but also the relative density field. The proposed procedure consists in the solution of a sequence of layout optimization problems applied to compliance minimization problems and mass minimization problems under local stress constraint. The microstructure used in this procedure was the SIMP (Solid Isotropic Material with Penalty). The approach reduces considerably the computational cost, showing to be efficient and robust. The results provided a well defined structural layout, with a sharpness distribution of the material and a boundary condition definition. The layout quality was proporcional to the medium size of the element and a considerable reduction of the project variables was observed due to the tetrahedrycal element
Resumo:
Artificial neural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements. Systems based on artificial neural networks have high computational rates due to the use of a massive number of these computational elements. Neural networks with feedback connections provide a computing model capable of solving a rich class of optimization problems. In this paper, a modified Hopfield network is developed for solving problems related to operations research. The internal parameters of the network are obtained using the valid-subspace technique. Simulated examples are presented as an illustration of the proposed approach. Copyright (C) 2000 IFAC.
Resumo:
This paper presents an efficient neural network for solving constrained nonlinear optimization problems. More specifically, a two-stage neural network architecture is developed and its internal parameters are computed using the valid-subspace technique. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty or weighting parameters for its initialization.
Resumo:
This thesis proposes an architecture of a new multiagent system framework for hybridization of metaheuristics inspired on the general Particle Swarm Optimization framework (PSO). The main contribution is to propose an effective approach to solve hard combinatory optimization problems. The choice of PSO as inspiration was given because it is inherently multiagent, allowing explore the features of multiagent systems, such as learning and cooperation techniques. In the proposed architecture, particles are autonomous agents with memory and methods for learning and making decisions, using search strategies to move in the solution space. The concepts of position and velocity originally defined in PSO are redefined for this approach. The proposed architecture was applied to the Traveling Salesman Problem and to the Quadratic Assignment Problem, and computational experiments were performed for testing its effectiveness. The experimental results were promising, with satisfactory performance, whereas the potential of the proposed architecture has not been fully explored. For further researches, the proposed approach will be also applied to multiobjective combinatorial optimization problems, which are closer to real-world problems. In the context of applied research, we intend to work with both students at the undergraduate level and a technical level in the implementation of the proposed architecture in real-world problems
Resumo:
Due to great difficulty of accurate solution of Combinatorial Optimization Problems, some heuristic methods have been developed and during many years, the analysis of performance of these approaches was not carried through in a systematic way. The proposal of this work is to make a statistical analysis of heuristic approaches to the Traveling Salesman Problem (TSP). The focus of the analysis is to evaluate the performance of each approach in relation to the necessary computational time until the attainment of the optimal solution for one determined instance of the TSP. Survival Analysis, assisted by methods for the hypothesis test of the equality between survival functions was used. The evaluated approaches were divided in three classes: Lin-Kernighan Algorithms, Evolutionary Algorithms and Particle Swarm Optimization. Beyond those approaches, it was enclosed in the analysis, a memetic algorithm (for symmetric and asymmetric TSP instances) that utilizes the Lin-Kernighan heuristics as its local search procedure
Resumo:
Combinatorial optimization problems have the goal of maximize or minimize functions defined over a finite domain. Metaheuristics are methods designed to find good solutions in this finite domain, sometimes the optimum solution, using a subordinated heuristic, which is modeled for each particular problem. This work presents algorithms based on particle swarm optimization (metaheuristic) applied to combinatorial optimization problems: the Traveling Salesman Problem and the Multicriteria Degree Constrained Minimum Spanning Tree Problem. The first problem optimizes only one objective, while the other problem deals with many objectives. In order to evaluate the performance of the algorithms proposed, they are compared, in terms of the quality of the solutions found, to other approaches
Resumo:
Multi-objective combinatorial optimization problems have peculiar characteristics that require optimization methods to adapt for this context. Since many of these problems are NP-Hard, the use of metaheuristics has grown over the last years. Particularly, many different approaches using Ant Colony Optimization (ACO) have been proposed. In this work, an ACO is proposed for the Multi-objective Shortest Path Problem, and is compared to two other optimizers found in the literature. A set of 18 instances from two distinct types of graphs are used, as well as a specific multiobjective performance assessment methodology. Initial experiments showed that the proposed algorithm is able to generate better approximation sets than the other optimizers for all instances. In the second part of this work, an experimental analysis is conducted, using several different multiobjective ACO proposals recently published and the same instances used in the first part. Results show each type of instance benefits a particular type of instance benefits a particular algorithmic approach. A new metaphor for the development of multiobjective ACOs is, then, proposed. Usually, ants share the same characteristics and only few works address multi-species approaches. This works proposes an approach where multi-species ants compete for food resources. Each specie has its own search strategy and different species do not access pheromone information of each other. As in nature, the successful ant populations are allowed to grow, whereas unsuccessful ones shrink. The approach introduced here shows to be able to inherit the behavior of strategies that are successful for different types of problems. Results of computational experiments are reported and show that the proposed approach is able to produce significantly better approximation sets than other methods
Resumo:
Sistemas baseados em redes neurais artificiais fornecem altas taxas de computação devido ao uso de um número massivo de elementos processadores simples. Redes neurais com conexões realimentadas fornecem um modelo computacional capaz de resolver uma rica classe de problemas de otimização. Este artigo apresenta uma nova abordagem para resolver problemas de otimização restrita utilizando redes neurais artificiais. Mais especificamente, uma rede de Hopfield modificada é desenvolvida cujos parâmetros internos são calculados usando a técnica de subespaço válido de soluções. A partir da obtenção destes parâmetros a rede tende a convergir aos pontos de equilíbrio que representam as possíveis soluções para o problema. Exemplos de simulação são apresentados para justificar a validade da abordagem proposta.
Resumo:
This paper addresses the problem of model reduction for uncertain discrete-time systems with convex bounded (polytope type) uncertainty. A reduced order precisely known model is obtained in such a way that the H2 and/or the H∞ guaranteed norm of the error between the original (uncertain) system and the reduced one is minimized. The optimization problems are formulated in terms of coupled (non-convex) LMIs - Linear Matrix Inequalities, being solved through iterative algorithms. Examples illustrate the results.
Resumo:
Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. Neural networks with feedback connections provide a computing model capable of solving a large class of optimization problems. This paper presents a novel approach for solving dynamic programming problems using artificial neural networks. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points which represent solutions (not necessarily optimal) for the dynamic programming problem. Simulated examples are presented and compared with other neural networks. The results demonstrate that proposed method gives a significant improvement.
Resumo:
This paper presents a new approach for solving constraint optimization problems (COP) based on the philosophy of lexicographical goal programming. A two-phase methodology for solving COP using a multi-objective strategy is used. In the first phase, the objective function is completely disregarded and the entire search effort is directed towards finding a single feasible solution. In the second phase, the problem is treated as a bi-objective optimization problem, turning the constraint optimization into a two-objective optimization. The two resulting objectives are the original objective function and the constraint violation degree. In the first phase a methodology based on progressive hardening of soft constraints is proposed in order to find feasible solutions. The performance of the proposed methodology was tested on 11 well-known benchmark functions.
Resumo:
In this work the multiarea optimal power flow (OPF) problem is decoupled into areas creating a set of regional OPF subproblems. The objective is to solve the optimal dispatch of active and reactive power for a determined area, without interfering in the neighboring areas. The regional OPF subproblems are modeled as a large-scale nonlinear constrained optimization problem, with both continuous and discrete variables. Constraints violated are handled as objective functions of the problem. In this way the original problem is converted to a multiobjective optimization problem, and a specifically-designed multiobjective evolutionary algorithm is proposed for solving the regional OPF subproblems. The proposed approach has been examined and tested on the RTS-96 and IEEE 354-bus test systems. Good quality suboptimal solutions were obtained, proving the effectiveness and robustness of the proposed approach. ©2009 IEEE.
Resumo:
The problem of assigning cells to switches in a cellular mobile network is an NP-hard optimization problem. So, real size mobile networks could not be solved by using exact methods. The alternative is the use of the heuristic methods, because they allow us to find a good quality solution in a quite satisfactory computational time. This paper proposes a Beam Search method to solve the problem of assignment cell in cellular mobile networks. Some modifications in this algorithm are also presented, which allows its parallel application. Computational results obtained from several tests confirm the effectiveness of this approach to provide good solutions for medium- and large-sized cellular mobile network.
Resumo:
A bilevel programming approach for the optimal contract pricing of distributed generation (DG) in distribution networks is presented. The outer optimization problem corresponds to the owner of the DG who must decide the contract price that would maximize his profits. The inner optimization problem corresponds to the distribution company (DisCo), which procures the minimization of the payments incurred in attending the expected demand while satisfying network constraints. The meet the expected demand the DisCo can purchase energy either form the transmission network through the substations or form the DG units within its network. The inner optimization problem is substituted by its Karush- Kuhn-Tucker optimality conditions, turning the bilevel programming problem into an equivalent single-level nonlinear programming problem which is solved using commercially available software. © 2010 IEEE.
Resumo:
This paper presents a Bi-level Programming (BP) approach to solve the Transmission Network Expansion Planning (TNEP) problem. The proposed model is envisaged under a market environment and considers security constraints. The upper-level of the BP problem corresponds to the transmission planner which procures the minimization of the total investment and load shedding cost. This upper-level problem is constrained by a single lower-level optimization problem which models a market clearing mechanism that includes security constraints. Results on the Garver's 6-bus and IEEE 24-bus RTS test systems are presented and discussed. Finally, some conclusions are drawn. © 2011 IEEE.