353 resultados para Zeros de polinômios
Resumo:
Foram utilizados 21.762 registros de peso do nascimento aos 550 dias de idade de 4.221 animais para estimativa das funções de covariância empregando modelos de regressão aleatória. Os modelos incluíram, como aleatórios, os efeitos genéticos aditivo direto e materno, de ambiente permanente de animal e de ambiente permanente materno e, como fixos, os efeitos de grupo contemporâneo, a idade da vaca ao parto (linear e quadrático) e o polinômio ortogonal de Legendre da idade do animal (regressão cúbica), como covariáveis. As variâncias residuais foram modeladas por uma função de variâncias com ordens de 2 a 6. Análises com polinômios ortogonais de diversas ordens foram realizadas para os efeitos genético aditivo direto, genético aditivo materno, de ambiente permanente de animal e de ambiente permanente materno. Os modelos foram comparados pelos critérios de informação Bayesiano de Schwarz (BIC) e Akaike (AIC). O melhor modelo indicado por todos os critérios foi o que considerou o efeito genético aditivo direto ajustado por um polinômio cúbico, o efeito genético materno ajustado por um polinômio quadrático, o efeito de ambiente permanente de animal ajustado por polinômio quártico e o efeito de ambiente permanente materno ajustado por polinômio linear. As estimativas de herdabilidade para o efeito direto foram maiores no início e no final do período estudado, com valores de 0,28 ao nascimento, 0,21 aos 240 dias e 0,24 aos 550 dias de idade. As estimativas de herdabilidade materna foram maiores aos 160 dias de idade (0,10) que nas demais fases do crescimento. As correlações genéticas variaram de moderadas a altas, diminuindo conforme o aumento da distância entre as idades. Maior eficiência na seleção para peso pode ser obtida considerando os pesos pós-desmama, período em que as estimativas de variância genética e herdabilidade foram superiores.
Resumo:
Foram utilizados 35.732 registros de peso do nascimento aos 660 dias de idade de 8.458 animais da raça Tabapuã para estimar funções de covariância utilizando modelos de regressão aleatória sobre polinômios de Legendre. Os modelos incluíram: como aleatórios, os efeitos genético aditivo direto, materno, de ambiente permanente de animal e materno; como fixos, os efeitos de grupo de contemporâneo; como covariáveis, a idade do animal à pesagem e a idade da vaca ao parto (linear e quadrática); e sobre a idade à pesagem, polinômio ortogonal de Legendre (regressão cúbica) foi considerado para modelar a curva média da população. O resíduo foi modelado considerando sete classes de variância e os modelos foram comparados pelos critérios de informação Bayesiano de Schwarz e Akaike. O melhor modelo apresentou ordens 4, 3, 6, 3 para os efeitos genético aditivo direto e materno, de ambiente permanente de animal e materno, respectivamente. As estimativas de covariância e herdabilidades, obtidas utilizando modelo bicaracter, e de regressão aleatória foram semelhantes. As estimativas de herdabilidade para o efeito genético aditivo direto, obtidas com o modelo de regressão aleatória, aumentaram do nascimento (0,15) aos 660 dias de idade (0,45). Maiores estimativas de herdabilidade materna foram obtidas para pesos medidos logo após o nascimento. As correlações genéticas variaram de moderadas a altas e diminuíram com o aumento da distância entre as pesagens. A seleção para maiores pesos em qualquer idade promove maior ganho de peso do nascimento aos 660 dias de idade.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objetivou-se avaliar a melhor modelagem para as variâncias genética aditiva, de ambiente permanente e residual da produção de leite no dia do controle (PLDC) de caprinos. Utilizaram-se modelos de regressão aleatória sobre polinômios ortogonais de Legendre com diferentes ordens de ajuste e variância residual heterogênea. Consideraram-se como efeitos fixos os efeitos de grupo de contemporâneos, a idade da cabra ao parto (co-variável) e a regressão fixa da PLDC sobre polinômios de Legendre, para modelar a trajetória média da população; e, como efeitos aleatórios, os efeitos genético aditivo e de ambiente permanente. O modelo com quatro classes de variâncias residuais foi o que proporcionou melhor ajuste. Os valores do logaritmo da função de verossimilhança, de AIC e BIC apontaram para seleção de modelos com ordens mais altas (cinco para o efeito genético e sete para o efeito de ambiente permanente). Entretanto, os autovalores associados às matrizes de co-variâncias entre os coeficientes de regressão indicaram a possibilidade de redução da dimensionalidade. As altas ordens de ajuste proporcionaram estimativas de variâncias genéticas e correlações genéticas e de ambiente permanente que não condizem com o fenômeno biológico estudado. O modelo de quinta ordem para a variância genética aditiva e de sétima ordem para o ambiente permanente foi indicado. Entretanto, um modelo mais parcimonioso, de quarta ordem para o efeito genético aditivo e de sexta ordem para o efeito de ambiente permanente, foi suficiente para ajustar as variâncias nos dados.
Resumo:
Utilizaram-se 17.767 registros de peso de 4.210 cordeiros da raça Santa Inês com o objetivo de comparar modelos de regressão aleatória com diferentes estruturas para modelar a variância residual em estudos genéticos da curva de crescimento. Os efeitos fixos incluídos na análise foram: grupo contemporâneo e idade da ovelha no parto. As regressões fixas e aleatórias foram ajustadas por meio de polinômios de Legendre de ordens 4 e 3, respectivamente. A variância residual foi ajustada por meio de classes heterogêneas e por funções de variância empregando polinômios ordinários e de Legendre de ordens 2 a 8. O modelo considerando homogeneidade de variâncias residuais mostrou-se inadequado. de acordo com os critérios utilizados, a variância residual contendo sete classes heterogêneas proporcionou melhor ajuste, embora um mais parcimonioso, com cinco classes, pudesse ser utilizado sem perdas na qualidade de ajuste da variância nos dados. O ajuste de funções de variância com qualquer ordem foi melhor que o obtido por meio de classes. O polinômio ordinário de ordem 6 proporcionou melhor ajuste entre as estruturas testadas. A modelagem do resíduo interferiu nas estimativas de variâncias e parâmetros genéticos. Além da alteração da classificação dos reprodutores, a magnitude dos valores genéticos preditos apresenta variações significativas, de acordo com o ajuste da variância residual empregado.
Resumo:
Um total de 19.770 pesos corporais de bovinos Guzerá, do nascimento aos 365 dias de idade, pertencentes ao banco de dados da Associação Brasileira dos Criadores de Zebu (ABCZ) foi analisado com os objetivos de comparar diferentes estruturas de variâncias residuais, considerando 1, 18, 28 e 53 classes residuais e funções de variância de ordens quadrática a quíntica; e estimar funções de co-variância de diferentes ordens para os efeitos genético aditivo direto, genético materno, de ambiente permanente de animal e de mãe e parâmetros genéticos para os pesos corporais usando modelos de regressão aleatória. Os efeitos aleatórios foram modelados por regressões polinomiais em escala de Legendre com ordens variando de linear a quártica. Os modelos foram comparados pelo teste de razão de verossimilhança e pelos critérios de Informação de Akaike e de Informação Bayesiano de Schwarz. O modelo com 18 classes heterogêneas foi o que melhor se ajustou às variâncias residuais, de acordo com os testes estatísticos, porém, o modelo com função de variância de quinta ordem também mostrou-se apropriado. Os valores de herdabilidade direta estimados foram maiores que os encontrados na literatura, variando de 0,04 a 0,53, mas seguiram a mesma tendência dos estimados pelas análises unicaracterísticas. A seleção para peso em qualquer idade melhoraria o peso em todas as idades no intervalo estudado.
Resumo:
In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed
Resumo:
There are two main approaches for using in adaptive controllers. One is the so-called model reference adaptive control (MRAC), and the other is the so-called adaptive pole placement control (APPC). In MRAC, a reference model is chosen to generate the desired trajectory that the plant output has to follow, and it can require cancellation of the plant zeros. Due to its flexibility in choosing the controller design methodology (state feedback, compensator design, linear quadratic, etc.) and the adaptive law (least squares, gradient, etc.), the APPC is the most general type of adaptive control. Traditionally, it has been developed in an indirect approach and, as an advantage, it may be applied to non-minimum phase plants, because do not involve plant zero-pole cancellations. The integration to variable structure systems allows to aggregate fast transient and robustness to parametric uncertainties and disturbances, as well. In this work, a variable structure adaptive pole placement control (VS-APPC) is proposed. Therefore, new switching laws are proposed, instead of using the traditional integral adaptive laws. Additionally, simulation results for an unstable first order system and simulation and practical results for a three-phase induction motor are shown
Resumo:
The main task and one of the major mobile robotics problems is its navigation process. Conceptualy, this process means drive the robot from an initial position and orientation to a goal position and orientation, along an admissible path respecting the temporal and velocity constraints. This task must be accomplished by some subtasks like robot localization in the workspace, admissible path planning, trajectory generation and motion control. Moreover, autonomous wheeled mobile robots have kinematics constraints, also called nonholonomic constraints, that impose the robot can not move everywhere freely in its workspace, reducing the number of feasible paths between two distinct positions. This work mainly approaches the path planning and trajectory generation problems applied to wheeled mobile robots acting on a robot soccer environment. The major dificulty in this process is to find a smooth function that respects the imposed robot kinematic constraints. This work proposes a path generation strategy based on parametric polynomials of third degree for the 'x' and 'y' axis. The 'theta' orientation is derived from the 'y' and 'x' relations in such a way that the generated path respects the kinematic constraint. To execute the trajectory, this work also shows a simple control strategy acting on the robot linear and angular velocities
Resumo:
In this work we have elaborated a spline-based method of solution of inicial value problems involving ordinary differential equations, with emphasis on linear equations. The method can be seen as an alternative for the traditional solvers such as Runge-Kutta, and avoids root calculations in the linear time invariant case. The method is then applied on a central problem of control theory, namely, the step response problem for linear EDOs with possibly varying coefficients, where root calculations do not apply. We have implemented an efficient algorithm which uses exclusively matrix-vector operations. The working interval (till the settling time) was determined through a calculation of the least stable mode using a modified power method. Several variants of the method have been compared by simulation. For general linear problems with fine grid, the proposed method compares favorably with the Euler method. In the time invariant case, where the alternative is root calculation, we have indications that the proposed method is competitive for equations of sifficiently high order.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The root-locus method is a well-known and commonly used tool in control system analysis and design. It is an important topic in introductory undergraduate engineering control disciplines. Although complementary root locus (plant with negative gain) is not as common as root locus (plant with positive gain) and in many introductory textbooks for control systems is not presented, it has been shown a valuable tool in control system design. This paper shows that complementary root locus can be plotted using only the well-known construction rules to plot root locus. It can offer for the students a better comprehension on this subject. These results present a procedure to avoid problems that appear in root-locus plots for plants with the same number of poles and zeros.
Resumo:
The problem of signal tracking, in the presence of a disturbance signal in the plant, is solved using a zero-variation methodology. A state feedback controller is designed in order to minimise the H-2-norm of the closed-loop system, such that the effect of the disturbance is attenuated. Then, a state estimator is designed and the modification of the zeros is used to minimise the H-infinity-norm from the reference input signal to the error signal. The error is taken to be the difference between the reference and the output signals, thereby making it a tracking problem. The design is formulated in a linear matrix inequality framework, such that the optimal solution of the stated control problem is obtained. Practical examples illustrate the effectiveness of the proposed method.