944 resultados para WET CHEMICAL-SYNTHESIS
Resumo:
TCNQ·− radical anions (TCNQ = 7,7,8,8,-tetracyanoquinodimethane) form a wide range of semiconducting coordination polymers when coordinated to transition metals. Some such as CuTCNQ and AgTCNQ exhibit molecular switching and memory storage properties; others have intriguing magnetic properties and for example may behave as molecular magnets at low temperature. In this review, the electro- and photo-chemical synthesis and characterization of this important class of material is reviewed. In particular, the electrochemistry and the redox properties of TCNQ derivatives of coordination polymers based on Cu, Ag, Mn, Fe, Co, Ni, Zn and Cd transition metals are surveyed, with an emphasis on the mechanistic aspects of their electrochemical formation via nucleation–growth processes. Given that TCNQ is an extremely good electron acceptor, readily forming TCNQ•− and TCNQ2-, electrochemical reduction of TCNQ in the presence of a transition metal ion provides an ideal method for synthesis of metal-TCNQ materials by electrocrystallization from organic solvents and ionic liquids or solid-solid transformation using TCNQ modified electrodes from aqueous media containing transition metal electrolytes. The significance of the reversible formal potential (E0f) in these studies is discussed. The coupling of electrocrystallisation on electrode surfaces and microscopic characterization of the electrodeposited materials reveals a wide range of morphologies and phases which strongly influence their properties and applications. Since TCNQ also can be photo-reduced in the presence of suitable electron donors, analogous photochemical approaches to the synthesis of TCNQ-transition metal derivatives are available. The advantages of electrochemical and photochemical methods of synthesis relative to chemical synthesis are outlined.
Resumo:
Frondosins A−E, 1−5 (Figure 1), are a family of related marine sesquiterpenoids first isolated in their dextro-rotatory form from the sponge Dysidea frondosa.(1a) Additionally, levo-rotatory frondosins A and D were isolated from an unidentified Eurospongia species.(1b) Frondosins A−E are compounds of interest due to their promising interleukin-8 (IL-8) affinity and protein kinase C inhibition.(1a) IL-8 antagonists are of particular interest in view of their antiinflammatory,(2a) anti-HIV,(1b, 2b) and antitumor(2c-2f) properties. To date, frondosins A, B, and C have been synthesized.(3) Notwithstanding these successes, the frondosins have proved quite a formidable synthetic challenge, and as of yet, there has been no synthesis of frondosin D or E. In this report, we describe our approaches to the molecular scaffold of frondosins D. This work has culminated in a very effective means of producing the trimethylbicyclo[5.4.0]undecane ring system common to all frondosins (shown in bold, Figure 1).
Resumo:
The double Friedel–Crafts acylation of readily accessible biaryls with oxalyl chloride delivers the respective phenanthrene-9,10-diones, providing an alternative to the traditional methods, which require harsh oxidizing conditions and multistep sequences. This simple method allows the synthesis of various symmetrical and non-symmetrical targets, and is even effective for the synthesis of the parent ring system from (unactivated) biphenyl.
Resumo:
Traditional methods are ill-suited for the synthesis of ortho,ortho-biphenols, a structural motif found in many polyphenolic natural products, as well as synthetically useful compounds such as the chiral ligands binol, vapol, and vanol. The new route consists of a radical-based reaction of an acetal-tethered biphenyl ether substrate and subsequent hydrolytic cleavage of the dibenzo-1,3-dioxepine intermediate.
Resumo:
o-Bromo(propa-1,2-dien-1-yl)arenes exhibit novel and orthogonal reactivity under Pd catalysis in the presence of secondary amines to form enamines (concerted Pd insertion, intramolecular carbopalladation, and terminative Buchwald–Hartwig coupling) and of amides to form indoles (addition, Buchwald–Hartwig cyclization, and loss of the acetyl group). The substrates for these reactions can be accessed in a reliable and highly selective two-step process from 2-bromoaryl bromides.
Resumo:
Methanesulfonic acid (MSA) was compared with sulfuric acid for the conversion of glucose and xylose mixtures to produce levulinic acid and furfural. The interactions of glucose and xylose, the predominant sugars found in biomass, were found to influence product yields with furfural degradation reactions enhanced under higher reactant loadings. Fast heating rates allowed maximal yields (>60 mol%) of levulinic acid and furfural to be achieved under short reaction times. Under the range of conditions examined, sulfuric acid produced a slight increase in levulinic acid yield by 6% (P = 0.02), although there was no significant difference (P = 0.11) between MSA and sulfuric acid in levulinic acid formed from glucose alone. The amount and type of the solid residue is similar between MSA and sulfuric acid. As such, MSA is a suitable alternative because its use minimizes corrosion and disposal issues associated with mineral acid catalysts. The heating value of the residue was 22 MJ/kg implying that it is a suitable source of fuel. On the basis of these results, a two-stage processing strategy is proposed to target high levulinic acid and furfural yields, and other chemical products (e.g., lactic acid, xylitol, acetic acid and formic acid). This will result in full utilization of bagasse components.
Resumo:
Sugarcane biorefineries co-producing fuels, green chemicals and bio-products offer great potential for improving the profitability and sustainability of sugarcane industries around the world. Sugarcane bagasse is widely regarded as one of the best biomass feedstocks for early adoption and commercialisation of biorefining technologies because of the large scale of the resource and its availability at sugar factories. Biomass biorefineries aim to convert bagasse through biochemical and thermochemical processes to produce low cost fermentable sugars which are a platform for value-adding. Through subsequent fermentation technologies or chemical synthesis, the sugars can be converted to fuels including ethanol and butanol, oils, organic acids such as succinic and levulinic and polymer precursors. Other biorefinery products can include food and animal feeds, plastics, fibre products and resins. Recent advances in biorefinery production technologies are being demonstrated in a unique research facility at the Queensland University of Technology’s Mackay Renewable Biocommodities Pilot Plant in Mackay, Australia. This pilot scale production facility located at Mackay Sugar Ltd’s Racecourse Mill is demonstrating the production of a range of fuels and other products from sugarcane bagasse. This paper will address the opportunities available for sugarcane biorefineries to contribute to future profitability and sustainability of the sugarcane industry.
Resumo:
This contribution sheds light on the role of crystal size and phase composition in inducing biomimetic apatite growth on the surface of nanostructured titania films synthesized by reactive magnetron sputtering of Ti targets in Ar+O2 plasmas. Unlike most existing techniques, this method enables one to deposit highly crystalline titania films with a wide range of phase composition and nanocrystal size, without any substrate heating or postannealing. Moreover, by using this dry plasma-based method one can avoid surface hydroxylation at the deposition stage, almost inevitable in wet chemical processes. Results of this work show that high phase purity and optimum crystal size appear to be the essential requirement for efficient apatite formation on magnetron plasma-fabricated bioactive titania coatings. © 2006 Wiley Periodicals, Inc.
Resumo:
This study reports the synthesis, characterization and application of nano zero-valent iron (nZVI). The nZVI was produced by a reduction method and compared with commercial available ZVI powder for Pb2+ removal from aqueous phase. Comparing with commercial ZVI, the laboratory made nZVI powder has a much higher specific surface area. XRD patterns have revealed zero valent iron phases in two ZVI materials. Different morphologies have been observed using SEM and TEM techniques. EDX spectrums revealed even distribution of Pb on surface after reaction. The XPS analysis has confirmed that immobilized lead was present in its zero-valent and bivalent forms. ‘Core-shell’ structure of prepared ZVI was revealed based on combination of XRD and XPS characterizations. In addition, comparing with Fluka ZVI, this lab made nZVI has much higher reactivity towards Pb2+ and within just 15 mins 99.9% removal can be reached. This synthesized nano ZVI material has shown great potential for heavy metal immobilization from waste water.
Resumo:
Phenols are well known noxious compounds, which are often found in various water sources. A novel analytical method has been researched and developed based on the properties of hemin–graphene hybrid nanosheets (H–GNs). These nanosheets were synthesized using a wet-chemical method, and they have peroxidase-like activity. Also, in the presence of H2O2, the nanosheets are efficient catalysts for the oxidation of the substrate, 4-aminoantipine (4-AP), and the phenols. The products of such an oxidation reaction are the colored quinone-imines (benzodiazepines). Importantly, these products enabled the differentiation of the three common phenols – pyrocatechol, resorcin and hydroquinone, with the use of a novel, spectroscopic method, which was developed for the simultaneous determination of the above three analytes. This spectroscopic method produced linear calibrations for the pyrocatechol (0.4–4.0 mg L−1), resorcin (0.2–2.0 mg L−1) and hydroquinone (0.8–8.0 mg L−1) analytes. In addition, kinetic and spectral data, obtained from the formation of the colored benzodiazepines, were used to establish multi-variate calibrations for the prediction of the three phenol analytes found in various kinds of water; partial least squares (PLS), principal component regression (PCR) and artificial neural network (ANN) models were used and the PLS model performed best.
Resumo:
Astaxanthin is a high value carotenoid produced by some bacteria, a few green algae, several fungi but only a limited number of plants from the genus Adonis. Astaxanthin has been industrially exploited as a feed supplement in poultry farming and aquaculture. Consumption of ketocarotenoids, most notably astaxanthin, is also increasingly associated with a wide range of health benefits,as demonstrated in numerous clinical studies. Currently astaxanthin is produced commercially by chemical synthesis or from algal production systems. Several studies have used a metabolic engineering approach to produce astaxanthin in transgenic plants. Previous attempts to produce transgenic potato tubers biofortified with astaxanthin have met with limited success. In this study we have investigated approaches to optimising tuber astaxanthin content. It is demonstrated that the selection of appropriate parental genotype for transgenic approaches and stacking carotenoid biosynthetic pathway genes with the cauliflower Or gene result in enhanced astaxanthin content, to give six-fold higher tuber astaxanthin content than has been achieved previously. Additionally we demonstrate the effects of growth environment on tuber carotenoid content in both wild type and astaxanthin-producing transgenic lines and describe the associated transcriptome and metabolome restructuring.
Resumo:
Sensors to detect toxic and harmful gases are usually based on metal oxides that are operated at elevated temperature. However, enabling gas detection at room temperature (RT) is a significant ongoing challenge. Here, we address this issue by demonstrating that microrods of semiconducting CuTCNQ (TCNQ=7,7,8,8-tetracyanoquinodimethane) with nanostructured features can be employed as conductometric gas sensors operating at 50°C for detection of oxidizing and reducing gases such as NO2 and NH3. The sensor is evaluated at RT and up to 200°C. It was found that CuTCNQ is transformed into a N-doped CuO material with p-type conductivity when annealed at the maximum temperature. This is the first time that such a transformation, from a semiconducting charge transfer material into a N-doped metal oxide is detected. It is shown here that both the surface chemistry and the type of majority charge carrier within the sensing layer is critically important for the type of response towards oxidizing and reducing gases. A detailed physical description of NO2 and NH3 sensing mechanism at CuTCNQ and N-doped CuO is provided to explain the difference in the response. For the N-doped CuO sensor, a detection limit of 1 ppm for NO2 and 10 ppm for NH3 are achieved.
Resumo:
Biorefineries, producing fuels, green chemicals and bio-products, offer great potential for improving the profitability and sustainability of tropical agricultural industries. Biomass from tropical crops like sugarcane, sweet sorghum, palm and cassava offer great potential because of the high biomass growth potential under favourable climatic conditions. Biorefineries aim to convert waste residues through biochemical and enzymatic processes to low cost fermentable sugars which are a platform for value-adding. Through subsequent fermentation utilising microbial biotechnologies or chemical synthesis, the sugars can be converted to fuels including ethanol and butanol, oils, organic acids such as lactic and levulinic acid and polymer precursors. Other biorefinery products can include food and animal feeds, plastics, fibre products and resins. Pretreatment technologies are a key to unlocking this potential and new technologies are emerging. This paper will address the opportunities available for tropical biorefineries to contribute to the future profitability of tropical agricultural industries. The importance of pretreatment technologies will be discussed.
Resumo:
Biorefineries, co-producing fuels, green chemicals and bio-products, offer great potential for enhancing agricultural value, and developing new industries in the bioeconomy. Biomass biorefineries aim to convert agricultural crops and wastes through biochemical and enzymatic processes to low cost fermentable sugars and other products which are platforms for value-adding. Through subsequent fermentation or chemical synthesis, the bio-based platforms can be converted to fuels including ethanol and butanol, oils, organic acids such as lactic and levulinic acid and polymer precursors. Other biorefinery products can include food and animal feeds, plastics, fibre products and resins. In 2014, QUT commissioned a study from Deloitte Access Economics and Correlli Consulting to assess the potential future economic value of tropical biorefineries to Queensland. This paper will report on the outcomes of this study and address the opportunities available for tropical biorefineries to contribute to the future profitability and sustainability of tropical agricultural industries in Queensland and more broadly across northern Australia.
Resumo:
Graphene oxide (GO) sheets can form liquid crystals (LCs) in their aqueous dispersions that are more viscous with a stronger LC feature. In this work we combine the viscous LC-GO solution with the blade-coating technique to make GO films, for constructing graphene-based supercapacitors in a scalable way. Reduced GO (rGO) films are prepared by wet chemical methods, using either hydrazine (HZ) or hydroiodic acid (HI). Solid-state supercapacitors with rGO films as electrodes and highly conductive carbon nanotube films as current collectors are fabricated and the capacitive properties of different rGO films are compared. It is found that the HZ-rGO film is superior to the HI-rGO film in achieving high capacitance, owing to the 3D structure of graphene sheets in the electrode. Compared to gelled electrolyte, the use of liquid electrolyte (H2SO4) can further increase the capacitance to 265 F per gram (corresponding to 52 mF per cm2) of the HZ-rGO film.