925 resultados para UAS Collision Avoidance
Resumo:
Navigational collisions are a major safety concern in many seaports. Despite the recent advances in port navigational safety research, little is known about harbor pilot’s perception of collision risks in anchorages. This study attempts to model such risks by employing a hierarchical ordered probit model, which is calibrated by using data collected through a risk perception survey conducted on Singapore port pilots. The hierarchical model is found to be useful to account for correlations in risks perceived by individual pilots. Results show higher perceived risks in anchorages attached to intersection, local and international fairway; becoming more critical at night. Lesser risks are perceived in anchorages featuring shoreline in boundary, higher water depth, lower density of stationary ships, cardinal marks and isolated danger marks. Pilotage experience shows a negative effect on perceived risks. This study indicates that hierarchical modeling would be useful for treating correlations in navigational safety data.
Resumo:
Navigational collisions are one of the major safety concerns in many seaports. To address this safety concern, a comprehensive and structured method of collision risk management is necessary. Traditionally management of port water collision risks has been relied on historical collision data. However, this collision-data-based approach is hampered by several shortcomings, such as randomness and rarity of collision occurrence leading to obtaining insufficient number of samples for a sound statistical analysis, insufficiency in explaining collision causation, and reactive approach to safety. A promising alternative approach that overcomes these shortcomings is the navigational traffic conflict technique that uses traffic conflicts as an alternative to the collision data. This paper proposes a collision risk management method by utilizing the principles of this technique. This risk management method allows safety analysts to diagnose safety deficiencies in a proactive manner, which, consequently, has great potential for managing collision risks in a fast, reliable and efficient manner.
Resumo:
Navigational collisions are one of the major safety concerns for many seaports. Continuing growth of shipping traffic in number and sizes is likely to result in increased number of traffic movements, which consequently could result higher risk of collisions in these restricted waters. This continually increasing safety concern warrants a comprehensive technique for modeling collision risk in port waters, particularly for modeling the probability of collision events and the associated consequences (i.e., injuries and fatalities). A number of techniques have been utilized for modeling the risk qualitatively, semi-quantitatively and quantitatively. These traditional techniques mostly rely on historical collision data, often in conjunction with expert judgments. However, these techniques are hampered by several shortcomings, such as randomness and rarity of collision occurrence leading to obtaining insufficient number of collision counts for a sound statistical analysis, insufficiency in explaining collision causation, and reactive approach to safety. A promising alternative approach that overcomes these shortcomings is the navigational traffic conflict technique (NTCT), which uses traffic conflicts as an alternative to the collisions for modeling the probability of collision events quantitatively. This article explores the existing techniques for modeling collision risk in port waters. In particular, it identifies the advantages and limitations of the traditional techniques and highlights the potentials of the NTCT in overcoming the limitations. In view of the principles of the NTCT, a structured method for managing collision risk is proposed. This risk management method allows safety analysts to diagnose safety deficiencies in a proactive manner, which consequently has great potential for managing collision risk in a fast, reliable and efficient manner.
Resumo:
This thesis presents a new approach to compute and optimize feasible three dimensional (3D) flight trajectories using aspects of Human Decision Making (HDM) strategies, for fixed wing Unmanned Aircraft (UA) operating in low altitude environments in the presence of real time planning deadlines. The underlying trajectory generation strategy involves the application of Manoeuvre Automaton (MA) theory to create sets of candidate flight manoeuvres which implicitly incorporate platform dynamic constraints. Feasible trajectories are formed through the concatenation of predefined flight manoeuvres in an optimized manner. During typical UAS operations, multiple objectives may exist, therefore the use of multi-objective optimization can potentially allow for convergence to a solution which better reflects overall mission requirements and HDM preferences. A GUI interface was developed to allow for knowledge capture from a human expert during simulated mission scenarios. The expert decision data captured is converted into value functions and corresponding criteria weightings using UTilite Additive (UTA) theory. The inclusion of preferences elicited from HDM decision data within an Automated Decision System (ADS) allows for the generation of trajectories which more closely represent the candidate HDM’s decision strategies. A novel Computationally Adaptive Trajectory Decision optimization System (CATDS) has been developed and implemented in simulation to dynamically manage, calculate and schedule system execution parameters to ensure that the trajectory solution search can generate a feasible solution, if one exists, within a given length of time. The inclusion of the CATDS potentially increases overall mission efficiency and may allow for the implementation of the system on different UAS platforms with varying onboard computational capabilities. These approaches have been demonstrated in simulation using a fixed wing UAS operating in low altitude environments with obstacles present.
Resumo:
Traditionally navigational safety analyses rely on historical collision data which is often hampered because of low collision counts, insufficiency in explaining collision causation, and reactive approach to safety. A promising alternative approach that overcomes these problems is using navigational traffic conflicts or near-misses as an alternative to the collision data. This book discusses how traffic conflicts can effectively be used in modeling of port water collision risks. Techniques for measuring and predicting collision risks in fairways, intersections, and anchorages are discussed by utilizing advanced statistical models. Risk measurement models, which quantitatively measure collision risks in waterways, are discussed. To predict risks, a hierarchical statistical modeling technique is discussed which identifies the factors influencing the risks. The modeling techniques are illustrated for Singapore port data. Results showed that traffic conflicts are an ethically appealing alternative to collision data for fast, reliable and effective safety assessment, thus possessing great potential for managing collision risks in port waters.
Resumo:
• The Queensland context • Rationale and aims • Method • Demographics and basic data • Avoidance of driving and walking situations • Success of intended avoidance • Further analyses (preliminary results) • Implications
Resumo:
Automated airborne collision-detection systems are a key enabling technology for facilitat- ing the integration of unmanned aerial vehicles (UAVs) into the national airspace. These safety-critical systems must be sensitive enough to provide timely warnings of genuine air- borne collision threats, but not so sensitive as to cause excessive false-alarms. Hence, an accurate characterisation of detection and false alarm sensitivity is essential for understand- ing performance trade-offs, and system designers can exploit this characterisation to help achieve a desired balance in system performance. In this paper we experimentally evaluate a sky-region, image based, aircraft collision detection system that is based on morphologi- cal and temporal processing techniques. (Note that the examined detection approaches are not suitable for the detection of potential collision threats against a ground clutter back- ground). A novel collection methodology for collecting realistic airborne collision-course target footage in both head-on and tail-chase engagement geometries is described. Under (hazy) blue sky conditions, our proposed system achieved detection ranges greater than 1540m in 3 flight test cases with no false alarm events in 14.14 hours of non-target data (under cloudy conditions, the system achieved detection ranges greater than 1170m in 4 flight test cases with no false alarm events in 6.63 hours of non-target data). Importantly, this paper is the first documented presentation of detection range versus false alarm curves generated from airborne target and non-target image data.
Resumo:
The Cross-Entropy (CE) is an efficient method for the estimation of rare-event probabilities and combinatorial optimization. This work presents a novel approach of the CE for optimization of a Soft-Computing controller. A Fuzzy controller was designed to command an unmanned aerial system (UAS) for avoiding collision task. The only sensor used to accomplish this task was a forward camera. The CE is used to reach a near-optimal controller by modifying the scaling factors of the controller inputs. The optimization was realized using the ROS-Gazebo simulation system. In order to evaluate the optimization a big amount of tests were carried out with a real quadcopter.
Resumo:
The investigation of rail incidents is a highly specialised and important area within the rail industry. Historically training for investigators has been disjointed, with no standard approach being applied consistently. Currently in Australia, rail incidents are investigated by the various rail operators and regulators of each State, with the more serious incidents investigated by the Australian Transport Safety Bureau (ATSB). However, it is hoped with the introduction of a National Safety Regulator for the industry, a standardised competency framework for rail incident investigators can be developed. Consequently, this will also lead to more standardised training across the industry for these specialised career paths. A previous scoping report published by the CRC for Rail Innovation highlighted a need within the industry for a standardised competency framework and training package. Based on the results of the scoping report, a comprehensive Training Needs Analysis for the rail industry was undertaken. This paper will examine potential barriers and facilitators that the industry may face when implementing this national training. Furthermore, based on the results of the Training Needs Analysis, differences and similarities in the needs of rail organisations as well as between operators and regulators will be examined.
Resumo:
Effective communication between older people and their family carers is necessary for providing appropriate and quality care. However, family carers and carereceivers may avoid discussing issues of concern and this may adversely affect the quality of the caring relationship. This study investigated the content of, and avoidance of issues in communication between 84 spousal and filial carers and carereceivers. The study findings indicate that family carers and carereceivers do avoid discussing issues of concern. Nurses working with families are well placed to promote more effective communication in the caring context to augment more satisfying caring relationships for both carers and carereceivers.
Resumo:
This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.
Resumo:
The purpose of this study was to test a model of the relationship between temperament, character and job performance, in order to better understand the cause of stable individual differences in job performance. Personality was conceptualized in terms of Cloninger, Svrakic and Przybeck’s (1993) theoretical framework of personality. It was expected that Self Directedness (character) would mediate Harm Avoidance and Persistence (temperament) in the prediction of job performance. In order to test the hypotheses, a sample of 94 employee/supervisor pairs was recruited from several organizations across Australia. Participants completed a number of questionnaires online, regarding their personality traits (completed by employees) and Job Performance (completed by Supervisors). Consistent with the hypothesis, Self Directedness was found to be a moderate, direct predictor of job performance. Also consistent with the hypothesis, Self Directedness mediated Harm Avoidance in the prediction of job performance. Results show that character (Self Directedness) is important in the prediction of job performance, and also suggests that fearful, avoidant individuals are less likely to perform well in the workplace, based on their low level of character development.
Resumo:
The main aim of this paper is to describe an adaptive re-planning algorithm based on a RRT and Game Theory to produce an efficient collision free obstacle adaptive Mission Path Planner for Search and Rescue (SAR) missions. This will provide UAV autopilots and flight computers with the capability to autonomously avoid static obstacles and No Fly Zones (NFZs) through dynamic adaptive path replanning. The methods and algorithms produce optimal collision free paths and can be integrated on a decision aid tool and UAV autopilots.
Resumo:
Simulation has been widely used to estimate the benefits of Cooperative Systems (CS) based on Inter-Vehicular Communications (IVC). This paper presents a new architecture built with the SiVIC simulator and the RTMaps™ multisensors prototyping platform. We introduce several improvements from a previous similar architecture, regarding IVC modelisation and vehicles’ control. It has been tuned with on-road measurements to improve fidelity. We discuss the results of a freeway emergency braking scenario (EEBL) implemented to validate our architecture’s capabilities.
Resumo:
This paper presents an alternative approach to image segmentation by using the spatial distribution of edge pixels as opposed to pixel intensities. The segmentation is achieved by a multi-layered approach and is intended to find suitable landing areas for an aircraft emergency landing. We combine standard techniques (edge detectors) with novel developed algorithms (line expansion and geometry test) to design an original segmentation algorithm. Our approach removes the dependency on environmental factors that traditionally influence lighting conditions, which in turn have negative impact on pixel-based segmentation techniques. We present test outcomes on realistic visual data collected from an aircraft, reporting on preliminary feedback about the performance of the detection. We demonstrate consistent performances over 97% detection rate.